Advanced Linear Algebra ,Vector Calculus and Statistics

Course Code	21MATEC/EE41	Course	Theory	Credits L-	3 - 0 -	
	,	type		T-P	0	
Hours/week: L - T- P	3 - 0 - 0			Total	3	
nours/week: L - I - F	5 - 0 - 0			credits	3	
Total Contact Hours	L = 40 Hrs; T = 0 Hrs; P = 0 Hrs			CIE	100	
Total Contact Hours	Total = 40 Hrs			Marks	100	
Flipped Classes		SEE	100			
content			Marks	100		

	Course learning objectives		
1.	To understand the concepts eigenvalues, eigenvectors, vector space,		
	Linear transformation.		
2.	To get acquainted with the orthogonal, orthonormal vectors, Gram Schmidt 's		
	process, singular value decomposition and quadratic forms.		
3.	To Understand various operations involving scalar and vector fields.		
4.	To get familiar with different types of vector integral.		

Pre-requisites: Basic Linear Algebra, vector algebra and vector calculus, basic statistics

Unit – I	Contact Hours = 8 Hours
Vector Spaces, sub spaces, null spaces, column spaces,	linear transformation. Linearly
independent sets and bases, coordinate systems, dimen	nsion of a vector space, Rank,
change of bases.	
Case study: Fourier transform as linear transformation an	d change of basis.
Case study: Vectors in Hilbert Spaces.	

Unit – II	Contact Hours = 8 Hours	
Orthogonality and Orthonormality: Inner product, length and orthogonality of vectors,		
orthogonal set of vectors, orthogonal projecti	on, Gram Schmidt's Process.	
Quadratic forms, Singular value decomposition	on(SVD).	
Case study: Principal Component Analysis (P	CA)	

Unit – III	Contact Hours = 8 Hours
Applications of Vector Calculus	

Applications of vector differentiation : Gradient , Divergence and Curl.

Applications of vector integration : Green's Theorem , Stoke's Theorem and Gauss divergence theorem.

Unit - IVContact Hours = 8 HoursCorrelation and Regression: Karl Pearson coefficient of correlation, Regression: Lines of regression

Problems. Multiple correlation and regression: Partial correlation and regression:

Unit – V	Contact Hours = 8 Hours
Sampling distribution: Sampling distribution, Sampling distributi	on of means, Test of significance
for small and large samples. 't' and 'chi square' distributions, F- di	stribution. Practical examples.

Flipped Classroom Details

Unit No.	Ι	II	III	IV	V
No. for Flipped					
Classroom Sessions					

	Books
	Text Books:
1.	David C. Lay, Linear Algebra and Its Applications, Pearson Publications, 2016
	onwards.
2.	Seymour Lipschutz, Dennis Spellman and Murray R. Spiegel, Schaum's Outline for
	Vector Analysis, McGraw Hill Publication, 2009 and onwards.
	Reference Books:
1.	B. S. Grewal – Higher Engineering Mathematics, Khanna Publishers, 42nd Edition,
	2012and onwards
2.	Erwin Kreyszig –Advanced Engineering Mathematics, John Wiley & Sons Inc., 9th
	Edition,2006 and onwards.
	E-resourses (NPTEL/SWAYAM Any Other)
1.	https://nptel.ac.in/courses/111105122 (Applications of Vector Calculus)
2.	https://nptel.ac.in/courses/111105042 (Correlation and Regression)

Course delivery methodsAssessment methods		Assessment methods	
1.	Chalk and Talk	1. IA tests	
2.	PPT and Videos	2. Online Quizzes (Surprise and Scheduled)	
3.	Flipped Classes	3. Open Book Tests (OBT)	
4.	Online classes	4. Course Seminar	
		5.	Semester End Examination

At	Course Outcome (COs) At the end of the course, the student will be able to (Highlight the action verb representing the learning level.)					
Lea App	rning Levels: Re - Remember; Un - Understand; Ap - ly; An - Analysis; Ev - Evaluate; Cr - Create	Learn ing Level	PO(s)	PSO(s)		
1.	Understand the various concepts connected with vector spaces.	Ар	1			
2.	Understand the orthogonality of vectors and related concepts.	Un	1			
3.	Use the various terminologies connected with vector/scalar functions and their applications.	Ар	1			
4.	Understand the relationships between numerical data.	Un	1			
5.	To get acquainted with sampling concepts.	Un	1			

Scheme of Continuous Internal Evaluation (CIE): Theory course

Components	Addition of two IA tests	Online Quiz	Addition of two OBAs\Math tools	Course Seminar	Total Marks
Marks	25+25 = 50	4* 5 marks = 20	10+10 =20	10	100
OBA- Open Book Assignment Minimum score to be eligible for SEE: 40 OUT OF 100					

Scł	Scheme of Semester End Examination (SEE):			
1.	It will be conducted for 100 marks of 3 hours duration.			
2.	Minimum marks required in SEE to pass: 40 out of 100			
3.	Question paper contains two questions from each unit each carrying 20 marks.			
	Students have to answer one full question from each unit.			

Rubrics:Levels	Target			
1 (Low)	60% of the students score Less than 50 % of the total marks.			
2 (Medium)	60% of the students score 50 – 70 % of the total marks.			
3 (High)	60% of the students score More than 70 % of the total marks.			

	CO-PO Mapping (Planned)								SO Maj Planne						
С	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
0	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1															
2															
3															
4															
5															
	Mention the levels: 1, 2, 3														

Discrete Mathematical Structures and Graph Theory

Course Code:	22MATS41	Course type	Theory	Credits L-T-P	3 -0- 0
Hours/week: L-T-P	3-0-0		·	Total credits	3
Total Contact Hours	L = 40 Hrs; T =0Hrs;P = 0 Hrs Total = 40 Hrs			CIE Marks	100
Flipped Classes content	10 Hours			SEE Marks	100

Course learning objectives

At	At the end of the course students should be able to					
1.	1. Get acquainted with fundamentals and all laws of logic and quantifiers.					
2.	Get familiar with relations and their closures, Posets and Lattices.					
3.	3. Understand the theory of recurrence relations and generating functions.					
4						

4. Get acquainted with basic concepts of graphs, trees and their applications..

Pre-requisites : Relations, Functions ,Permutations and combinations, Algebra.

Unit – I	Contact Hours = 8 Hours			
Fundamentals of Logic: Basic connectives and Truth tables, Logical equivalence- Laws of Logic,				
Logical Implication-Rules of Inference. Quantifiers- Universal and	Existential Quantifiers.			

Unit – II	Contact Hours = 8 Hours				
Relations: Types and Properties of Relations (revision), n-ary Relations and Their Applications.					
Computer recognition-Zero One Matrices and Directed graphs, Transitive, closure, Warshall's					
algorithm, Equivalence relation and Partitions, Posets and Hasse Diagrams, Lattices.					

Unit – III	Contact Hours = 8 Hours			
Recurrence relations: Definition, Homogeneous recurrence relations, Non Homogeneous recurrence				
relations. Solution of homogeneous and non homogeneous recurrence relations. Generating functions.				
Solution of recurrence relation by generating function.				

Unit – IV	Contact Hours = 8 Hours				
Graph Theory I: Definitions and Examples, Subgraphs, Matrix Representation of graphs.					
Complements and Graph Isomorphism, Connectivity, Euler Trails and Circuits, Shortest path:					
Dijkartas algorithm. Planar Graphs, Hamiltonian Paths and Cycles.					

Unit –V	Contact Hours = 8 Hours

Graph Theory II: Coloring covering and matching: Chromatic number, chromatic polynomial, uniquely colorable graphs , coloring planar graphs :Five color theorem ,Four color theorem. Covering minimal covering, Matching Halls theorem.

Flipped Classroom Details

Unit No.	I	II	III	IV	V
No. for Flipped Classroom Sessions	2	2	2	2	2

	Books					
	Text Books:					
1.	Kolman, Busby, Ross "Discrete Mathematical Structures", 6 th Edition Prentice Hall of India, 2010 onwards					
2.	Ralph Grimaldi, "Discrete and Combinatorial Mathematics 4th Edition 2003 onwards					
	Reference Books:					
1.	Kenneth Rosen "Discrete Mathematics and Its Applications with Combinatorics and					
	Graph Theory (SIE) 7th Edition onwards					
2.	Narsingh Deo ,"Graph theory and its Applications"					
	E-resource's (NPTEL/SWAYAM Any Other)- mention links					
1.	https://archive.nptel.ac.in/courses/111/106/111106086/(DMS)					
2.	https://www.digimat.in/nptel/courses/video/111106102/L19.html(GT)					
3	https://www.javatpoint.com/graph-theory-tree-and-forest (GTTrees)					

	Course delivery methods	Assessment methods		
1.	Chalk and Talk	1.	IA tests	
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)	
3.	Flipped Classes	3.	Open Book Tests (OBT)/Matlab	
4.	Online classes	4.	Course Seminar	
		5.	Semester End Examination	

	Course Outcome (COs)							
	At the end of the course, the student will be at	ole to						
Lear	ning Levels: Re - Remember; Un - Understand; Ap - Apply;	Learning						
An -	Analysis; Ev - Evaluate; Cr - Create	Level	PO(s)	PSO(s)				
1	Understand and Apply the Logic of mathematics in the field of		1					
1.	Computer science.	Un, Ap						
h	Explain and Analyze different Relations and their closures. Posets		1					
2.	and lattices.	Un, Ap						
3.	Apply theory of solution of recurrence relations to solve them.	Un, Ap	1					
4.	Apply the concepts related to graphs their relevant applications	Un,Ap	1					

Scheme of Continuous Internal Evaluation (CIE):

Components	Addition of two IA tests	Online Quiz	Addition of two OBAs/Math tools	Course Seminar	Total Marks				
Marks	25+25= 50	4* 5 marks = 20	10+10 =20	10	100				
OBA- Open Book Assignment Minimum score to be eligible for CIE: 40 OUT OF 100									

Sch	cheme of Semester End Examination (SEE):					
1.	It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.					
2.	Minimum marks required in SEE to pass: 40 out of 100					
3.	Question paper contains three parts A(30 marks),B(50 marks) and C (20 marks).Student has to answer					
	1. From Part A answer any 5 questions each Question Carries 6 Marks.					
	2. From Part B answer any one full question from each unit and each Question Carries 10 Marks.					
	3. From Part C answer any one full question and each Question Carries 20 Marks.					

	CO-PO Mapping (Planned)										CO-PSO Mapping(Planned)				
~~~	PO	PO	РО	РО	PO	PO	PO	РО	РО	PO1	РО	РО	PSO	PSO	PSO
со	1	2	3	4	5	6	7	8	9	0	11	12	1	2	3
1	٧														
2	٧														
3	٧														
4	٧														
							•								

### **PROBABILITY AND STATISTICS**

Course Code	22ESCEC/EE41	Course type	Theory	Credits L-T-P	3 – 0 – 0
Hours/week: L - T- P	3-0-0	Total credits	3		
Total Contact Hours	L = 40  Hrs; T = 0  Hr $Total = 40  Hrs$	CIE Marks	100		
Flipped Classes content	10 Hours	SEE Marks	100		

	Course learning objectives						
1.	Understand joint probability distributions, including joint probability density functions, mass						
	functions, and distributions of discrete and continuous random variables.						
2.	Familiarize Statistical inference (estimation and hypothesis testing) from the standpoint						
	of statistical decision making						
3.	Identify the use of correlation and regression techniques,						

Pre-requisites: Basic Linear Algebra, Vector Algebra and Vector Calculus, Basic Statistics

Unit – I	<b>Contact Hours = 8 Hours</b>					
Probability and Distributions						
Random Variables (RV), Discrete and Continuous Random variables, (DRV,CRV) Probability						
Distribution Functions (PDF) and Cumulative Distribution Functions(CDF), Expectations, Mean,						
Variance. Binomial, Poisson, Exponential and Normal Distributions. Practical examples.						

# Unit – II Contact Hours = 8 Hours Joint PDF and Stochastic Processes Discrete Joint PDF, Conditional Joint PDF, Expectations (Mean, Variance and Covariance). Definition and classification of stochastic processes. Discrete state and discrete parameter stochastic process,

Unique fixed probability vector, Regular Stochastic Matrix, Transition probability, Markov chain.

<b>Contact Hours = 8 Hours</b>						
Sampling Distribution						
Sampling distribution, Sampling distribution of means, Test of significance for small and large						
samples. 't' and 'chi square' distributions, F- distribution. Practical examples.						
r						

Unit – IV	<b>Contact Hours = 8 Hours</b>					
Statistical Decision Theory: Decision making process, Decision rules: decisions under uncertainity,						
Maximax Principle, Maximin Principle, Hurwicz Principle, Laplac	e Principle,Savage principle,					
Decision Under Risk: Maximum Likelihood Principle, Expected Payoff, Expected opportunity Loss or						
Expected Regret. Problems. Decision using posterior probabilities (Bayesian rule) Expected value						
sample Information (EVSI), Decision Trees. Problems.						

## Unit – V

**Contact Hours = 8 Hours** 

**Correlation and Regression** Karl Pearson coefficient of correlation, Regression: Lines of regression Problems. Multiple correlation

and regression. Partial correlation and regression.

### Flipped Classroom Details

Unit No.	Ι	II	III	IV	V
No. for Flipped					
<b>Classroom Sessions</b>					

	Books
	Text Books:
1.	B.V.Ramana – Engineering Mathematics, Tata Mcgraw Hill Publishing Company Limited 2004 and onwards.
2.	N.D.Vohra –Business Statistics, Mcgraw Hill Publishing Company Limited 2014 and onwards.
	Reference Books:
	Fundamentals of Mathematical Statistics, Gupta S C and V. K. Kapoor, Sultan Chand and
1.	Sons, 2009 and onwards.
2.	B. S. Grewal – Higher Engineering Mathematics, Khanna Publishers, 42nd Edition,
	2012 and onwards
	E-resourses (NPTEL/SWAYAM Any Other)
1.	https://nptel.ac.in/courses/111102014 (Stochastic Process)
2.	https://nptel.ac.in/courses/111105042 (Correlation and Regression)

	Course delivery methods		Assessment methods
1.	Chalk and Talk	1.	IA tests
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)
3.	Flipped Classes	3.	Open Book Tests (OBT)
4.	Online classes	4.	Course Seminar
		5.	Semester End Examination

A	<b>Course Outcome (COs)</b> At the end of the course, the student will be able to (Highlight the <b>action verb</b> representing the							
	learning level.)							
	rning Levels: Re - Remember; Un - Understand; Ap - Apply; · Analysis; Ev - Evaluate; Cr - Create	Learni ng Level	PO(s)	PSO(s)				
1.	Apply various discrete and continuous probability distributions and to study various real life situations and skills of analyzing multivariate probability distributions.	Ap	1					
2.	Use large sample and small sample tests of significance, to compute inference based on given data	Un	1					
3.	Use the suitable type of decision and the analysis among various techniques in the field under uncertainty.	Ар	1					
4.	Use techniques for investigating the relationship between two quantitative variables	Un	1					

### Scheme of Continuous Internal Evaluation (CIE): Theory course

Components	Addition of two IA tests	Online Quiz	Addition of two OBAs\Math tools	Course Seminar	Total Marks
Marks	25+25 = 50	4* 5 marks = 20	10+10 =20	10	100

# OBA- Open Book Assignment Minimum score to be eligible for SEE: 40 OUT OF 100

Scl	neme of Semester End Examination (SEE):
1.	It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the calculation of SGPA and CGPA.
2.	Minimum marks required in SEE to pass: 40 out of 100
3.	Question paper contains three parts A(30 marks),B(50 marks) and C (20 marks).Student has to answer
	<ol> <li>From Part A answer any 5 questions each Question Carries 6 Marks.</li> <li>From Part B answer any one full question from each unit and each question Carries 10 Marks.</li> <li>From Part C answer any one full question and each Question Carries20 Marks.</li> </ol>

	CO-PO Mapping (Planned)							CO-PSO Mapping (Planned)							
С	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
0	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	$\checkmark$														
2	$\checkmark$														
3	$\checkmark$														
4	$\checkmark$														
	Mention the levels: 1, 2, 3														

### **Operation Research and Statistical Theory**

Course Code:	22MATCV/ME/AE41	Course type	Theory	Credits L-T-P	3-0-0
Hours/week: L-T-P	3-0-0	Total credits	3		
Tabal Canta at Having	L = 40 Hrs; T = 0Hrs;P =		100		
Total Contact Hours	Total = 40 Hrs			CIE Marks	100
Flipped Classes					100
content	10 Hours			SEE Marks	100

	Course learning objectives						
At the	At the end of the course students should be able to						
1.	1. Fit a suitable curve for the data using regression.						
2.	2. Get knowledge about various probability distributions involving discrete /continuous random						
	variable.						
3.	3. Get familiar with various sampling distributions and estimation of various parameters.						
4.	4. Get acquainted with various hypothesis testing techniques						
5.	Understand Joint discrete PDF and various stochastic processes.						

Pre-requisites : Basic statistics, Basic probability.

Unit – I **Contact Hours = 8 Hours** 

Unit – IIContact Hours = 8 Hours

Unit – III	Contact Hours = 8 Hours				
Hypothesis Testing : Null and alternate hypothesis, Critical region, Sampling, Sampling errors, Level					
of significance and confidence limits, Testing hypothesis of mean, Testing hypothesis of variance,					
Testing hypothesis of proportion.					

Unit – IV	Contact Hours = 8 Hours				
Sampling distribution: Sampling distribution, Sampling distribution of means, Test of significance					
for small and large samples. 't' and 'chi square' distributions, F- di	stribution. Practical examples.				

Unit –V	Contact Hours = 8 Hours				
Joint PDF and Stochastic Process: Discrete Multivariable Joint PDF, Multivariable Conditional					
Joint PDF, Expectations (Mean, Variance and Covariance). Definition and classification of stochastic					
processes. Discrete state and discrete parameter stochastic process, Unique fixed probability vector,					
Regular Stochastic Matrix, Transition probability, Markov chain.					

Unit No.	I	II	III	IV	V
No. for Flipped Classroom Sessions					

	Books
	Text Books:
1.	B. S. Grewal – Higher Engineering Mathematics, Khanna Publishers, 42 nd Edition, 2012 and onwards.
2.	B.V.Ramana – Engineering Mathematics, Tata Mcgraw Hill Publishing Company Limited 2004 and onwards.
	Reference Books:
1.	Fundamentals of Mathematical Statistics by S.C.Gupta and V.K.Kapoor., Sultan Chand and
	Sons, 2009 and onwards.
2.	Erwin Kreyszig – Advanced Engineering Mathematics, John Wiley & Sons Inc., 9 th Edition, 2006 and onwards.
	E-resource's (NPTEL/SWAYAM Any Other)- mention links
1.	https://archive.nptel.ac.in/courses/111/102/111102111/ (Prob and Stochastic)
2.	https://archive.nptel.ac.in/courses/111/104/111104147/(Sampling and Linear regression)

Course delivery methods Assessment metho			Assessment methods
1.	Chalk and Talk	1.	IA tests
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)
3.	Flipped Classes	3.	Open Book Tests (OBT)/Matlab
4.	Online classes	4.	Course Seminar
		5.	Semester End Examination

	Course Outcome (COs)									
At the end of the course, the student will be able to										
Lear	ning Levels: Re - Remember; Un - Understand; Ap - Apply;	Learning	PO(s)	PSO(s)						
An -	Analysis; Ev - Evaluate; Cr - Create	Level	FO(3)	F30(3)						
1.	To UNDERSTAND correlation and regression .	Un	1	1						
	To UNDERSTAND the concept of random variable and various		1	1						
2.	probability distributions connected with discrete and continuous	Un								
	random variable.									
3.	To <b>APPLY</b> methods to test a hypothesis.	Ар	1	1						
4.	To APPLY the concepts related to sampling distribution to	۸n	1	1						
4.	practical problems.	Ар								
5.	To UNDERSTAND the joint discrete probability distributions and		1	1						
	Markov chain.	Un								

### Scheme of Continuous Internal Evaluation (CIE):

Components	Addition of two IA tests	Online Quiz	Addition of two OBAs/Math tools	Course Seminar	Total Marks					
Marks	25+25= 50	4* 5 marks = 20	10+10 =20	10	100					
OBA- Open Book Assignment Minimum score to be eligible for CIE: 40 OUT OF 100										

1.	It will be conducted for 100 marks of 3 hours duration.							
2.	2. Minimum marks required in SEE to pass: 40 out of 100							
3.	Question paper contains two questions from each unit each carrying 20 marks. Students have to answer one full question from each unit.							

CO-PO Mapping (Planned)								CO-PSO							
	CO-PO Mapping (Planned)										Mapping(Planned)				
со	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO1	РО	РО	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	11	12	1	2	3
1	٧										2	1			
2	٧										2	1	٧		
3	٧										2	1	٧		
4	٧										2	1	٧		
	1-low 2-medium 3-high														