Transforms in Signals

Course Code	22MATEC/EE31	Course type	Theory	Credits L-T-P	3-0-0
Hours/week: L-T-P	3-0-0		Total credits	3	
Total Contact Hours	L = 40Hrs; T = 0Hr Total = 40Hrs	s;P = OHrs		CIE Marks	100
Flipped Classes content	10 Hours			SEE Marks	100

	Course learning objectives
1.	Learn Fourier analysis of periodic and non periodic systems.
2.	Get acquainted with discrete and continuous time functions and their Fourier Analysis.
3.	Study the frequency response for circuits using Laplace Transforms

Pre-requisites: Integration and differentiation.

Unit – I	Contact Hours = 8 Hours
Fundamentals and transmission through LTI: Signal (Examples	and classification of singles). Basic
operations on signals. Basic Continuous -Time Signals and Basi	c Discreet –Time Signals (Unit step
function, Unit impulse function, Ramp function, Exponential sign	als, Sinusoidal signals, Exponentially
damped sinusoidal signals and pulse signals.)	
System Dreportios of system (Lipearity Causality Time invariant	a and Stability) Posponso of a linear

System. Properties of system (Linearity, Causality, Time –invariance and Stability.)Response of a linear system (The Zero –input, Zero-state and total response)

Unit – II	Contact Hours = 8 Hours
Fourier Analysis of continuous time signals: Classification of time	functions – continuous, discrete,
periodic and non-periodic functions. Fourier analysis of continuous	s time periodic functions using
continuous time Fourier series (CTFS), properties of CTFS (proof no	ot necessary), Numericals.
Fourier analysis of continuous time non-periodic functions using	continuous time Fourier transform
(CTFT), properties of CTFT(proof not necessary), relationship be	etween CTFS and CTFT, numericals
pertaining to standard time functions (unit impulse, unit step, rig	ht sided and two-sided exponential
functions, rectangular function, constant of magnitude, sinuso	idal, complex exponential, signum
function).	

Unit –III	Contact Hours = 8 Hours
Fourier Analysis of discrete time functions: Fourier analysis of disc	crete time periodic functions using
discrete time Fourier series (DTFS), properties of DTFS(proof not n	ecessary), Numericals.
Fourier analysis of discrete time non-periodic functions using discr	ete time Fourier transform(DTFT),
properties of DTFT(proof not necessary), relationship between DTI	FS and DTFT,Numericals pertaining
to standard time functions (unit impulse, unit step, right sided and	two-sided exponential functions,
rectangular function, constant of magnitude, sinusoidal, complex e	exponential, signum function).

Unit – IV	Contact Hours = 8 Hours
Laplace transforms: Definition of Laplace transforms. Region of co	nvergence. Poles and Zeros of
rational Laplace Transforms. Properties of Region of convergence.	Laplace transforms for common
signals. Properties of Laplace transforms (Linearity, time shifting, S	bifting in s-domain, time scaling,
time-domain integration, Differentiation if time-domain, different	iation in s-domain, convolution)
Partial fraction expansion. Unilateral Laplace transform. Initial valu	ue theorem, Final value theorem.
Waveform synthesis, Relationship between Laplace Transform and	fourier transform.
Numerical pertaining to standard continuous time functions.	

Unit –V

Contact Hours = 8 Hours

Z- transforms:Definition.z-transform and ROC of finite duration sequences (Right sided,Left-sided and double –sided sequences), z-transform and ROC of Infinite duration sequences (Positive-time,Negative-side and Double –sided exponential sequence), ROC and stability. Properties of z-transform.

Inverse Z-transforms: Partial fraction expansion method, long division method and complex inverse integral. Linear constant coefficient difference equations. Relation between Z-transform and, discrete time Fourier transform and Laplace transform.Numerical pertaining to standard discrete time functions.

Flipped Classroom Details

Unit No.	I	II	III	IV	V
No. for Flipped Classroom Sessions	2	2	2	2	2

	Books
	Text Books:
1.	DR. D. Ganesh Rao, "Signals and Systems", Sanguine Tech. Publ., 2011.
2.	H. Hsu and R. Ranjan, "SIGNALS AND SYSTEMS ", 2 nd edition, Schaum's Outline Series,
3.	P. Z. Peebles, "Probability, Random Variables, and Random Signal Principles ", McGraw Hill, 4 th
	edition, 2017 and onwards.
	Reference Books:
1.	Simon Haykin and Barry Van Veen, "Signals and Systems", 2 nd edition, Wiley, 2003 and
	onwards.
2.	A. Anand Kumar, "Signals and Systems ", 3 rd Edition, PHI Learning.
	E-resourses (NPTEL/SWAYAM Any Other)
2.	https://nptel.ac.in/courses/117105085 (Fourier Analysis of discrete time functions)

	Course delivery methods	delivery methods Assessment methods	
1.	Chalk and Talk	1.	IA tests
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)
3.	Flipped Classes	3.	Open Book Assignments (OBA)
4.	Online classes	4.	Course Seminar
		5.	Semester End Examination

	Course Outcome (COs)			
At t	he end of the course, the student will be able to (Highlight the actio r	verb repres	senting th	ne learning
	level.)			
Lear	ning Levels: Re - Remember; Un - Understand; Ap - Apply;	Learning		
An -	Analysis; Ev - Evaluate; Cr - Create	Level	PO(3)	r 30(S)
1	Understand and Apply Fourier Analysis for periodic and non	Po Lin An	1	
1.	periodic signals.	ке,оп,др		
2.	Apply DTFS and DTFT to deal with analysis of Discrete Signals.	Re,Un,Ap	1	
2	Apply Laplace Transforms and Z transforms to analyze the	Re I In An	1	
J.	signals.	nc,on,Ap		

Scheme of Continuous Internal Evaluation (CIE): Theory course

Components	Addition of two IA tests	Online Quiz	Addition of two OBAs/Math tools	Course Seminar	Total Marks
Marks	25+25= 50	4* 5 marks = 20	10+10 =20	10	100

OBA- Open Book Assignment Minimum score to be eligible for SEE: 40 OUT OF 100

Sch	neme of Semester End Examination (SEE):
1.	It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the
	calculation of SGPA and CGPA.
2.	Minimum marks required in SEE to pass: 40 out of 100
3.	Question paper contains three parts A(30 marks), B(50 marks) and C (20 marks). Student has to
	answer
	1. From Part A answer any 5 questions each Question Carries 6 Marks.
	2. From Part B answer any one full question from each unit and each question Carries 10 Marks.
	3. From Part C answer any one full question and each Question Carries20 Marks.

CO PO Manning (Planned)							CO-PSO									
	CO-PO Mapping (Planned)								Марр	oing(Pla	nned)					
~	PO P								PSO	PSO	PSO					
0	1 2 3 4 5 6 7 8 9 0 11 12							1	2	3						
1	√															
2																
3	3 🗸															
				N	lentio	n the le	evels: 1	, 2, 3		Mention the levels: 1, 2, 3						

FUNDAMENTALS OF STATISTICS AND PROBABILITY FOR DATA SCIENCE

Course Code:	22MATS31	Course type	Theory	Credits L-T-P	3-0-0
Hours/week: L-T-P	3-0-0	Total credits	3		
Total Contact Hours	L = 40 Hrs; T = 0Hi Total = 40 Hrs	CIE Marks	100		
Flipped Classes content	10 Hours	SEE Marks	100		

	Course learning objectives						
At the	At the end of the course students should be able to						
1.	1. Fit a suitable curve for the data using regression.						
2.	Get knowledge about various probability distributions involving discrete /continuous random						
	variable.						
3.	Get familiar with various sampling distributions and estimation of various parameters.						
4.	Get acquainted with various hypothesis testing techniques.						
5.	Understand Joint discrete PDF and various stochastic processes.						

Pre-requisites : Basic statistics, Basic probability.

Unit – I	Contact Hours = 8 Hours				
Correlation and Regression : Curve fitting by least square method. Fitting the curve , $y = a+bx$, , $y = a+bx$,					
ax^{b} , y =a+bx+cx ² .Karl Pearson coefficient of correlation, Linear Regression: Problems. Multiple					
correlation and regression. Partial correlation and regression.					

Unit – IIContact Hours = 8 HoursRandom Variable: Revision of basic probability, conditionalprobability upto Bayes theorem.Discrete and Continuous Random Variable, (DRV,CRV) Probability Distribution Functions (PDF) andCumulative Distribution Functions (CDF), Expectations, Mean, Variance. Binomial, Poisson,Exponential and Normal Distributions. Practical examples.Contact Hours = 8 Hours

Unit –III	Contact Hours = 8 Hours				
Joint PDF and Stochastic Process: Discrete Multivariable Joint P	DF, Multivariable Conditional Joint				
PDF, Expectations (Mean, Variance and Covariance). Definition and classification of stochastic					
processes. Discrete state and discrete parameter stochastic process, Unique fixed probability vector,					
Regular Stochastic Matrix, Transition probability, Markov chain.					

Unit – IV	Contact Hours = 8 Hours				
Hypothesis Testing : Null and alternate hypothesis, Critical region, Sampling, Sampling errors, Level					
of significance and confidence limits ,Testing hypothesis of mean, Testing hypothesis of variance,					
Testing hypothesis of proportion.					

Unit – V	Contact Hours = 8 Hours

Sampling distribution: Sampling distribution, Sampling distribution of means, Test of significance for small and large samples. 't' and 'chi square' distributions, F- distribution. Practical examples.

Unit No.	Self-Study Topics
1	Regression models, Regression strategies.
2	Discrete and Continuous Random vectors in different areas such as Mutual funds, lottery draw, decision making, decision trees etc
3	Restate the research question as research hypothesis and a null hypothesis about the populations and determine the characteristics of the comparison distribution.
4	Eliminating variability during gathering statistical data.
5	Monte Carlo Simulation.

	Books							
	Text Books:							
1.	B. S. Grewal: "Higher Engineering Mathematics", Khanna publishers, 42 ^h Ed., 2021							
	onwards.							
2.	Erwin Kreyszig: "Advanced Engineering Mathematics, John Wiley & Sons Inc., 9 th Edition, 2006 and onwards.							
	Reference Books:							
1.	B.V. Ramana: "Higher Engineering Mathematics" McGraw-Hill Education, 11 th Ed.,							
	2004 onwards.							
2.	Srimanta Pal &Subodh C. Bhunia: "Engineering Mathematics" Oxford University Press,							
	3 rd Ed., 2016 onwards							
3	N.P Bali and Manish Goyal:"A textbook of Engineering Mathematics Laxmi							
	Publications, 10 th Ed., 2022 onwards							
4	C. Ray Wylie, Louis C. Barrett: "Advanced Engineering Mathematics"McGraw –Hill							
	Book Co., New york, 6 th Ed., 2017 onwards							
5	H. K. Dass and Er. RajnishVerma: Higher Engineering Mathematics"S. Chand							
	Publication, 3 rd Ed., 2014.							
	E-resourses (NPTEL/SWAYAM Any Other)- mention links							
1.	https://nptel.ac.in/courses/111106111							
3	https://nptel.ac.in/ <u>courses</u> /111104025							
4	https://nptel.ac.in/courses/117105085							
5	https://nptel.ac.in/courses/111105042							

Course delivery methods			Assessment methods		
1.	Chalk and Talk	1.	IA tests		
2.	PPT and Videos	2.	Open Book Assignments (OBA)		
3.	Flipped Classes	3.	Course Seminar		
4.	Practice session/Demonstrations in Labs	4.	Quizzes		
5.	Virtual Labs (if present)	5.	Semester End Examination		

	Course Outcome (COs)								
Lear	ning Levels:								
	Re - Remember; Un - Understand; Ap - Apply; An - Analysis	; Ev - Evaluate;	Cr - Crea	ite					
At th	e end of the course, the student will be able to	Learning Level	PO(s)	PSO(s)					
1.	Understand regression analysis for data analysis.	Re,Un,Ap	1						
	Apply the knowledge of Discrete and Continuous Random	Re,Un,Ap	1						
2.	vectors in different areas such as Mutual funds, lottery draw,								
	decision making, decision trees etc								
2	Apply knowledge of Sampling distribution and Hypothesis	Re,Un,Ap	1						
J.	Testing to conduct basic statistical analysis of data.								

Scheme of Continuous Internal Evaluation (CIE):

Components	Addition of two IA tests	Online Quiz	Addition of two OBAs/Python	Course Seminar	Total Marks			
Marks	25+25= 50	4* 5 marks = 20	10+10 =20	10	100			
OBA- Open Book Assignment								

Minimum score to be eligible for CIE: 40 OUT OF 100

Sch	Scheme of Semester End Examination (SEE):				
1.	It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the				
	calculation of SGPA and CGPA.				
2.	Minimum marks required in SEE to pass: 40 out of 100				
3.	Question paper contains three parts A(30 marks), B(50 marks) and C (20 marks). Student has to				
	answer				
	1. From Part A answer any 5 questions each Question Carries 6 Marks.				
	2. From Part B answer any one full question from each unit and each question Carries 10 Marks.				
	3. From Part C answer any one full question and each Question Carries20 Marks.				

CO DO Manning (planned)							CO-PSO								
	CO-PO Mapping (planned)							Марр	oing(pla	nned)					
~	PO							PSO	PSO	PSO					
0	1	2	3	4	5	6	7	8	9	0	11	12	1	2	3
1	\checkmark														
2	\checkmark														
3	\checkmark														
	Tick mark the CO, PO and PSO mapping														

Advanced Calculus and Statistics

Course Code	22MATC31	Course type	Theory	Credits L-T-P	3 - 0- 0
Hours/week: L-T-P	3 - 0 - 0			Total credits	3
Total Contact Hours	L = 40 Hrs; Total = 40 Hrs			CIE Marks	100
Flipped Classes content	10 Hours		SEE Marks	100	

Course learning objectives				
1.	Fit suitable curve for the data using regression analysis.			
2.	Get familiar with various probability distributions involving discrete variables.			
3.	Get familiar with various probability distributions involving discrete continuous variables.			
4.	Get acquainted with concept of functionals.			
5.	Learn Fourier Analysis of periodic/aperiodic systems.			

Required Knowledge of :Differentiation, Integration, Basic Statistics

Unit – I	Contact Hours = 8 Hours
Correlation and Regression: Curve fitting by least square method	: $y=a+bx$, $y=ax^{b}$, $y=a+bx+cx^{2}$,
Karl Pearson coefficient of correlation, Lines of regression Problem	ns. Multiple correlation and
regression. Partial correlation and regression.	

Unit – II	Contact Hours = 8 Hours	
Random Variable I: Revision of basic probability, conditional pro-	bability upto Bayes theorem.	
Discrete Random Variable, (DRV,CRV) Probability Distribution Functions (PDF) and Cumulative		
Distribution Functions(CDF), Expectations, Mean, Variance. Binor	nial, Poisson and Geometric	
Distribution. Practical examples.		

Unit – III	Contact Hours = 8 Hours
Random Variable II: Continuous Random Variable, (DRV,CRV)	Probability Distribution Functions
(PDF) and Cumulative Distribution Functions(CDF), Expectations,	Mean, Variance. Exponential,
Normal and Uniform Distributions. Practical examples.	

Unit –I V	Contact Hours = 8 Hours
Fourier Series: Periodic functions. Drichlet's conditions, Fourier s	series, Half range Fourier sine and
cosine series. Practical examples, Harmonic analysis.	

Unit –V	Contact Hours = 8 Hours
Calculus of variations: Concept of a Functional, Extremal of a Fu	nctional, Euler's equation and
equivalents. Standard problems. Applications: Geodesics, Hanging	g chain, Minimal surface of
revolution and Brachistochrone problem.	

Flipped Classroom Details

Unit No.	I	II	III	IV	v
No. for Flipped Classroom Sessions	2	2	2	2	2

Unit No.	Self-Study Topics
1	Regression models, Regression strategies.
2	Discrete and Continuous Random vectors in different areas such as Mutual funds, lottery draw etc
3	Discrete and Continuous Random vectors in different areas such as decision making, decision trees etc
4	Basic theorems on Real Analysis, Parsvel Identities.
5	Multivariable Calculus and Linear Algebra concepts.

	Books
	Text Books:
1.	B. S. Grewal: "Higher Engineering Mathematics", Khanna publishers, 42 th Ed., 2021 onwards.
2.	Erwin Kreyszig: "Advanced Engineering Mathematics, John Wiley & Sons Inc., 9th Edition,
	2006 and onwards.
	Reference Books:
1.	B.V. Ramana: "Higher Engineering Mathematics" McGraw-Hill Education, 11 th Ed., 2004
	onwards.
2.	Srimanta Pal & Subodh C. Bhunia: "Engineering Mathematics" Oxford University Press, 3 rd Ed.,
	2016 onwards
3	N.P Bali and Manish Goyal:"A textbook of Engineering Mathematics" Laxmi
	Publications, 10 th Ed., 2022 onwards
4	C. Ray Wylie, Louis C. Barrett: "Advanced Engineering Mathematics" McGraw -Hill Book
	Co., New york, 6 th Ed., 2017 onwards
5	H. K. Dass and Er. RajnishVerma: "Higher Engineering Mathematics"S. Chand Publication, 3rd Ed., 2014.
	E-resourses (NPTEL/SWAYAM Any Other)- mention links
1.	https://nptel.ac.in/courses/111106111
2	https://nptel.ac.in/ <u>courses</u> /111104025
3	https://nptel.ac.in/courses/117105085
4	https://nptel.ac.in/courses/111105042

Course delivery methods			Assessment methods				
1.	Chalk and Talk	1.	IA tests				
2.	PPT and Videos	2.	Open Book Assignments (OBA)				
3.	Flipped Classes	3.	Course Seminar				
4.	Practice session/Demonstrations in Labs	4.	Quizzes				
5.	Virtual Labs (if present)	5.	Semester End Examination				

Course Outcome (COs)												
Lear	Learning Levels:											
	Re - Remember; Un - Understand; Ap - Apply; An - Analysis; Ev - Evaluate; Cr - Create											
At th	e end of the course, the student will be able to	Learning Level	PO(s)	PSO(s)								
1.	Apply the knowledge of random variables and regression analysis in fields such as machine learning.	Re,Un,Ap	1									
2.	Develop frequency bond series from time bond functions using Fourier series.	Re,Un,Ap	1									
3.	Apply the concept of functional to solve complex optimization problems.	Re,Un,Ap	1									

Scheme of Continuous Internal Evaluation (CIE):

Components	Addition of two IA tests	Online Quiz	Addition of two OBAs/Python	Course Seminar	Total Marks						
Marks	25+25= 50	4* 5 marks = 20	10+10 =20	10	100						
OBA- Open Book Assignment											

Minimum score to be eligible for CIE: 40 OUT OF 100

Sch	Scheme of Semester End Examination (SEE):								
1.	It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the								
	calculation of SGPA and CGPA.								
2.	Minimum marks required in SEE to pass: 40 out of 100								
3.	Question paper contains three parts A(30 marks),B(50 marks) and C (20 marks).Student has to								
	answer								
	1. From Part A answer any 5 questions each Question Carries 6 Marks.								
	2. From Part B answer any one full question from each unit and each Question Carries 10 Marks.								
	3. From Part C answer any one full question and each Question Carries20 Marks.								

								CO-PSO							
CO-PO Mapping (planned)									Mapping(planned)						
со	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO1	РО	РО	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	11	12	1	2	3
1	\checkmark														
2	\checkmark														
3	\checkmark														
	Tick mark the CO, PO and PSO mapping														