Ability Enhancement Course 3rd SEMESTER Mathematics I for EE/EC Stream

CourseCode	22DMATE 31	Coursetype	AEC	CreditsL-T-P	1-0-0
Hours/week:L-T-P	1-0-0			Totalcredits	1
TotalContactHours	L = 20 Hrs; T = 0 H	Hrs; P = 0 Hrs	CIEMarks	50	
	Total = 20 Hrs				
FlippedClassescontent	5 Hours			SEEMarks	50

	Course learning objectives					
1.	1. Review basic differentiation					
2.	2. Get acquainted with different applications of partial differentiation					
3.	. Get familiar with various topics in Linear Algebra.					
5.	Understand the basic concepts of multiple integral.					

Required Knowledge of: Basic Trigonometry, Calculus, Algebra

Unit-I: Calculus

Introduction to limits, continuity and differentiation: Polar Curves, angle between radius vector and tangent, angle between polar curves, Radius of curvature (Cartesian and polar form)

Unit–II: Partial Differentiation

Contact Hours =5Hours

Contact Hours = 5Hours

Definition and simple problems. Total Differentiation-Problems. Partial Differentiation of Composite functions – Problems. Maxima and minima of function of two variables. Jacobians.

Unit – III: Linear Algebra I

Rank of a matrix by elementary transformation, consistency of system of linear equations-Gauss Jordan method and Gauss-Seidal method. Eigen value and Eigen vectors – Rayleigh's Power method.

Unit– IV: Multiple Integrals

Contact Hours =5Hours

Cylindrical and spherical polar coordinates. Evaluation of double and triple integrals, evaluation of double integrals by change of order of integration, changing into polar coordinates. Applications to find: Area and Volume by double integral. Problems

Flipped Classroom Details

Unit No.	Ι	I I	Ш	IV
No. for flipped Classroom Sessions	1	1	1	2

	Books					
	Text Books:					
1.	B.S. Grewal – Higher Engineering Mathematics, Khanna Publishers, 42 nd Edition, 2012.					
2.	Erwin Kreyszig – Advanced Engineering Mathematics, John Wiley & Sons Inc., 9th Edition, 2006.					
3.	B. V.Ramana-Higher Engineering Mathematics, Tata McGraw-Hill Education Private Limited, Tenth reprint 2010 and onwards.					
	Reference Books:					
1.	Peter V. O' Neil – Advanced Engineering Mathematics, Thomson Brooks/Cole, 7th Edition,					
	2011.					
2	Glyn James – Advanced Modern Engineering Mathematics, Pearson Education, 4th Edition,					
	2010.					

Coursedeliverymethods			Assessmentmethods				
1.	ChalkandTalk	1.	IAtests				
2.	PPT and Videos	2.	OpenBookAssignments(OBA)/LabProject				
3.	FlippedClasses	3.	LabTest				
4.	Practicesession/DemonstrationsinLabs	4.	SemesterEndExamination				
5.	VirtualLabs(ifpresent)						

	Course Outcome (COs) At the end of the course, the student will be able to (Highlight the action verb representing the learning level.)							
Learn Evalu	Learning Levels: Re - Remember; Un - Understand; Ap - Apply;An - Analysis; Ev -Learning LevelPO(s)PSO(s)							
1.	Review basics of Differentiation and Integration	L1	1	1				
2.	Review basic concepts of Calculus.	L1	1	1				
3.	Understand basic Linear Algebra	L2	1	1				
4.	Understand multivariable Calculus.	L1	1	1				

	CO-POMapping(planned)									Maj	CO-PSO pping(plan	ned)			
С	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	PO1	PSO1	PSO2	PSO3
0											1	2			
1	\checkmark														
2	\checkmark														
3	\checkmark														
4	\checkmark														
	•		•	•	•	•		•	•	•					

Scheme of Continuous Internal Evaluation(CIE):Theory course (Non-Integrated)

Components	AdditionofCIEcomponents	TotalM arks
WrittenTest	30	
Two quizzes	20	50

Scheme of Semester End Examination (SEE): Theory course(Non-Integrated)

Components	TotalMarks
Written exams	50

Ability Enhancement Course 3rd SEMESTER Mathematics I for CS /IS Stream

CourseCode		Coursetype	AEC	CreditsL-T-P	1-0-0
Hours/week:L-T-P	1-0-0		1	Total credits	1
TotalContactHours	L = 20 Hrs; T = 0 Hrs; Total = 20 Hrs	P = 0 Hrs	CIEMarks	50	
FlippedClassescontent	5 Hours			SEEMarks	50

	Course learning objectives					
1.	Review basic differentiation and Integration					
1.	Get acquainted with different applications of Calculus.					
2.	Understand modular arithmetic.					
5.	Get familiar with various topics in Linear Algebra.					

Required Knowledge of: Basic Trigonometry, Calculus, Algebra

Unit– I: Basic Differentiation, Integration Contact Hours = 5 Hours

Rate of change, increasing/decreasing functions, tangents and normals, maxima and minima (first derivative test motivated geometrically and second derivative test given as a provable tool). Simple problems (that illustrate basic principles and understanding of the subject as well as real-life situations). Integration of a variety of functions by substitution, by partial fractions and by parts, Basic properties of definite integrals and evaluation of definite integrals.

Unit-II: Calculus

Contact Hours =5 Hours

Series expansion of functions (Taylor's and Maclaurin's series) Polar Curves, angle between radius vector and tangent, angle between polar curves,.

Unit – III: Modular Arithmetic:

Introduction to congruences, Linear Congruences, The Chinese Remainder theorem, Solving Polynomials, Linear Diophantine Equation, System of Linear Congruences, Euler's Theorem, Wilson Theorem and Fermat's little theorem (only statements).

Unit– IV: Linear Algebra I	Contact Hours =5 Hours
Rank of a matrix by elementary transformation, consistency	of system of linear equations-Gauss
Jordan method and Gauss-Seidal method. Eigen value and Ei	gen vectors – Rayleigh's Power method.

Flipped Classroom Details

Unit No.	Ι	II	III	IV
No. for FlippedClassroomSessions	1	1	1	2

	Books				
	Text Books:				
1.	B.S. Grewal – Higher Engineering Mathematics, Khanna Publishers, 42 nd Edition, 2012.				
2.	Erwin Kreyszig – Advanced Engineering Mathematics, John Wiley & Sons Inc., 9th Edition, 2006.				
3.	B. V.Ramana- Higher Engineering Mathematics, Tata McGraw-Hill Education Private Limited, Tenth reprint 2010				
	and onwards.				
	Reference Books:				
1.	Peter V. O' Neil – Advanced Engineering Mathematics, Thomson Brooks/Cole, 7th Edition,				
	2011.				
2	Glyn James – Advanced Modern Engineering Mathematics, Pearson Education, 4th Edition,				
	2010.				

Coursedeliverymethods			Assessmentmethods		
1.	ChalkandTalk	1.	IAtests		
2.	PPT and Videos	2.	OpenBookAssignments(OBA)/LabProject		
3.	FlippedClasses	3.	LabTest		
4.	Practicesession/DemonstrationsinLabs	4.	SemesterEndExamination		
5.	VirtualLabs(ifpresent)				

Course Outcome (COs) At the end of the course, the student will be able to (Highlight the action verb representing the learning level.)							
Lear Analy	Learning Levels: Re - Remember; Un - Understand; Ap - Apply;An -LearningPO(s)PSO(s)Analysis; Ev - Evaluate; Cr - CreatePO(s)PSO(s)PSO(s)						
1.	Review basics of Differentiation and Integration	L1	1	1			
2.	Review basic concepts of Calculus.	L1	1	1			
3.	Understand modular arithmetic	L2	1	1			
4.	Understand basic Linear Algebra.	L1	1	1			

	CO-POMapping(planned)								Мар	CO-PSO ping(plar	nned)				
С	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO10	РО	РО	PSO1	PSO2	PSO3
0	1	2	3	4	5	6	7	8	9		11	12			
1															
2															
3															
4															
	•	•	•	•	•	•	•	•	•	•					

Scheme of Continuous Internal Evaluation (CIE):Theory course(Non-Integrated)

Components	ts Addition of CIE components			
WrittenTest	30			
Two quizzes	20	50		

Scheme of Semester End Examination(SEE):Theory course (Non-Integrated)

Components	TotalMarks
Written exams	50

Ability Enhancement Course 3rd SEMESTER

14	lathematics 1 101	CIV/ACI U/IVIC	II Stita	111	
CourseCode	22DMATC 31	Coursetype	AEC	CreditsL-T-P	1-0-0
Hours/week:L-T-P	1-0-0			Totalcredits	1
TotalContactHours	L = 20 Hrs; T = 0 H	Hrs; $P = 0$ Hrs		CIEMarks	50
	Total = 20 Hrs				
FlippedClassescontent	5 Hours			SEEMarks	50

Mathematics I for Civ/Aero/Mech Stream

Course learning objectives					
1.	Review basic differentiation and Integration				
1.	Get acquainted with different applications of Calculus.				
2.	Understand the basic concepts of partial differentiation.				
5.	Get familiar with various topics in Linear Algebra.				

Required Knowledge of: Basic Trigonometry, Calculus, Algebra

Unit- I: Basic Differentiation,	Integration	ContactHours =5Hours
Rate of change, increasing/decreasing	ng functions, tang	gents and normals,
maxima and minima (first derivative	e test motivated g	geometrically and second derivative
test given as a provable tool). Simpl	e problems (that	illustrate basic principles and understanding of
the subject as well as real-life situat	ions).	
Integration of a variety of functions	by substitution, l	by partial fractions and by parts, Basic

properties of definite integrals and evaluation of definite integrals.

Unit–II: Calculus	Contact Hours =5Hours

Introduction to limits, continuity and differentiation: Polar Curves, angle between radius vector and tangent, angle between polar curves, Radius of curvature (Cartesian and polar form only).

Unit – III: Partial Differentiation	ContactHours =5Hours

Definition and simple problems. Total Differentiation-Problems. Partial Differentiation of Composite functions - Problems. Maxima and minima of function of two variables. Jacobians.

Unit-IV: Linear Algebra

Rank of a matrix by elementary transformation, consistency of system of linear equations-Gauss Jordan method and Gauss-Seidal method. Eigen value and Eigen vectors - Rayleigh's Power method.

ContactHours = 5Hours

Flipped Classroom Details

Unit No.	Ι	п	III	IV
No. for Flipped	1	1	2	1
Classroom Sessions				

	Books
	Text Books:
1.	B.S. Grewal – Higher Engineering Mathematics, Khanna Publishers, 42 nd Edition, 2012.
2.	Erwin Kreyszig – Advanced Engineering Mathematics, John Wiley & Sons Inc., 9th Edition, 2006.
3.	B. V.Ramana- Higher Engineering Mathematics, Tata McGraw-Hill Education Private Limited, Tenth reprint 2010 and onwards.
	Reference Books:
1.	Peter V. O' Neil – Advanced Engineering Mathematics, Thomson Brooks/Cole, 7th Edition,
	2011.
2	Glyn James – Advanced Modern Engineering Mathematics, Pearson Education, 4th Edition,
	2010.

	Course delivery methods	Assessmentmethods			
1.	Chalk and Talk	1.	IA tests		
2.	PPT andVideos	2.	Open Book Assignments(OBA)/LabProject		
3.	Flipped Classes	3.	LabTest		
4.	Practicesession/ Demonstrationsin Labs	4.	Semester End Examination		
5.	Virtual Labs(if present)				

	Course Outcome (COs) At the end of the course, the student will be able to (Highlight the action verb representing the learning level.)							
Learı Analy	ning Levels: Re - Remember; Un - Understand; Ap - Apply; An - rsis; Ev - Evaluate; Cr - Create	Learning Level	PO(s)	PSO(s)				
1.	Review basics of Differentiation and Integration	L1	1	1				
2.	Review basic concepts of Calculus.	L1	1	1				
3.	Understand multivariable Calculus.	L2	1	1				
4.	Understand basic Linear Algebra.	L1	1	1				

1																
	CO-POMapping(planned)						CO-PSO									
														1	Mapping(planned	1)
	со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	1	\checkmark														
	2	V														
	3	\checkmark														
	4	V														
					•			•	•	•						

Scheme of Continuous Internal Evaluation(CIE):Theory course (Non-Integrated)

Components	Addition of CIE components	Total Marks
WrittenTest	30	
Two quizzes	20	50

Scheme of Semester End Examination (SEE): Theory course (Non-Integrated)

Components	Total Marks
Written exams	50