Mathematics for Civil Engineering Stream-II

Course Code	22MATC21	Course type	Integrated	Credits L-T-P	3 - 0- 1
Hours/week: L-T-P	Hours/week: L-T-P 3 - 0 - 2		Total credits	4	
Total Contact Hours	L = 40 Hrs; T = 0 H	Hrs;P = 20 Hrs		CIE Marks 100	
	Total = 60 Hrs				
Flipped Classes	10 Hours			SEE Marks 100	
content	10110013				

Course learning objectives			
1.	Familiarize the importance of Integral calculus and Vector calculus essential for civil		
2.	Engineering.		
3.	Analyze Civil engineering problems applying Partial Differential Equations.		
4.	Develop the knowledge of solving civil engineering problems numerically.		

Required Knowledge of : Basic Trigonometry, Calculus, Algebra, Matrices, I Semester knowledge

Unit – IContact Hours = 8 HoursIntroduction to Integral Calculus in Civil Engineering applications.Multiple Integrals: Evaluation of double and triple integrals, evaluation of double integralsby change of order of integration, changing into polar coordinates. Applications to find: Areaand Volume by double integral. Problems.Beta and Gamma functions: Definitions, properties,relation between Beta and Gamma functions. Problems.Applications: Applications to mathematical quantities (Area, Surface area, Volume), Analysisof probabilistic models.

(RBT Levels: L1, L2 and L3)

Unit – II	Contact Hours = 8 Hours			
Introduction to Vector Calculus in Civil Engineering applications.				
Vector Differentiation: Scalar and vector fields. Gradient, directional derivative, curl and				
divergence - physical interpretation, solenoidal and irrotational vector fields. Problems.				
Vector Integration: Line integrals, Surface integrals. Applications to work done by a force				
and flux. Statement of Green's theorem and Stoke's theorem. Problems.				
Applications: Heat and mass transfer, oil refinery problems, environmental engineering.				
Analysis of stream lines, velocity and acceleration of a moving particle.				
(RBT Levels: L1, L2 and L3)				

Unit – III	Contact Hours = 8 Hours			
Importance of numerical methods for discrete data in the field of Civil Engineering.				
Solution of algebraic and transcendental equations: Regula-Fa	alsi and Newton-Raphson			
methods (only formulae). Problems. Finite differences, Interpolation using Newton's forward				
and backward difference formulae, Newton's divided difference formula and Lagrange's				
interpolation formula (All formulae without proof). Problems.				
Numerical integration : Trapezoidal, Simpson's $(1/3)^{rd}$ and $(3/8)^{th}$ rules (without proof).				
Problems.				
Applications: Estimating the approximate roots, extremumvalues, Area, volume, surface				
area. Finding approximate solutions to civil engineering problems.				
(RBT Levels: L1, L2 and L3)				

Unit –IV

Contact Hours = 8 Hours

Introduction to various numerical techniques for handling Civil Engineering applications.

Numerical Solution of Ordinary Differential Equations (ODE's): Numerical solution of ordinary differential equations of first order and first degree – Taylor's series method, Modified Euler's method, Runge-Kutta method of fourth order and Milne's predictor-corrector formula (No derivations of formulae). Problems.

Applications: Finding approximate solutions to ODE related to civil engineering fields. **(RBT Levels: L1, L2 and L3)**

Unit –V	Contact Hours = 8 Hours			
Importance of partial differential equations for Civil Engineering application.				
Formation of PDE's by elimination of arbitrary constants and functions. Solution of non				
homogeneous PDE by direct integration. Homogeneous PDEs involving derivative with				
respect to one independent variable only. Solution of Lagrange's linear PDE. Derivation of				
one-dimensional heat equation and wave equation.				
Applications: Design of structures (vibration of rod/membrane)				
(RBT Levels: L1, L2 and L3)				

Flipped Classroom Details

Unit No.	I	II	III	IV	V
No. for Flipped Classroom Sessions	2	2	2	2	2

List of Experiments

Unit No.	No. of Experiments	Topic(s) related to Experiment	
1	1	Program to compute surface area, volume and centre of gravity	
1	2	Evaluation of improper integrals	

2	3	Finding gradient, divergent, curl and their geometrical interpretation	
2	4	Verification of Green's theorem	
5	5	Solution of one-dimensional heat equation and wave equation	
3	6	Solution of algebraic and transcendental equations by Regula-Falsi and	
		Newton- Raphson method	
3	7	Interpolation/Extrapolation using Newton's forward and backward	
		differenceformula	
3	8	Computation of area under the curve using Trapezoidal, Simpson's	
		(1/3) rd and (3/8) th rule	
4	9	Solution of ODE of first order and first degree by Taylor's series and	
		Modified Euler method	
4	10	Solution of ODE of first order and first degree by Runge-Kutta 4 th order	
		and Milne's predictor-corrector method	

Unit No.	Self-Study Topics		
1	Volume by triple integration, Centre of gravity.		
2	Volume integral and Gauss divergence theorem.		
3	Bisection method, Lagrange's inverse Interpolation		
4	Adam-Bashforth method		
5	Solution of one-dimensional heat equation and wave equation by the method of		
	Separation of variables		

	Books		
	Text Books:		
1	B. S. Grewal: "Higher Engineering Mathematics" Khanna publishers, 44th Ed., 2021.		
2	E. Kreyszig : "Advanced Engineering Mathematics" John Wiley & Sons, 10th Ed., 2018.		
	Reference Books:		
1	V. Ramana: "Higher Engineering Mathematics" McGraw-Hill Education, 11th Ed., 2017		
2	Srimanta Pal & Subodh C. Bhunia: "Engineering Mathematics" Oxford University Press, 3rd		
	Ed., 2016.		
3	N.P Bali and Manish Goyal: "A textbook of Engineering Mathematics" Laxmi Publications,		
	10th Ed., 2022.		
4	C. Ray Wylie, Louis C. Barrett: "Advanced Engineering Mathematics"McGraw –HillBook		
	Co., Newyork, 6th Ed., 2017.		
5	Gupta C.B, Sing S.R and Mukesh Kumar: "Engineering Mathematic for Semester I and		
	II", Mc-Graw Hill Education(India) Pvt. Ltd 2015.		

6	H. K. Dass and Er. Rajnish Verma: "Higher Engineering Mathematics"S. Chand
	Publication, 3rd Ed., 2014.
7	James Stewart: "Calculus" Cengage Publications, 7th Ed., 2019.
8	David C Lay: "Linear Algebra and its Applications", Pearson Publishers, 4th Ed., 2018
9	Gareth Williams: "Linear Algebra with applications", Jones Bartlett Publishers Inc., 6 th Ed.,
	2017.
	E-resourses (NPTEL/SWAYAM Any Other)- mention links
1	https://www.youtube.com/watch?v=ksS_yOK1vtk&list=PLbRMhDVUMngflrZCNOyPZwHUU1pP66vQ
	W&ab_channel=IITKharagpurJuly2018
2	https://www.youtube.com/watch?v=TWAN_T66Cps&list=PLq-
	Gm0yRYwTguDcfylj1ZicXxzdZCAr5S&ab_channel=NumericalMethods
3	https://www.youtube.com/watch?v=zT83sJ5IrEE&list=PLyqSpQzTE6M-
	QT7PvEBHV0iNMvZk9mocO&ab_channel=nptelhrd
4	https://www.youtube.com/watch?v=p8u0Fc63OYg&list=PLOzRYVm0a65eWglxWw5WzQLrlG2EaiTli&
	index=24&ab_channel=IITBombayJuly2018
5	

Course delivery methods		Assessment methods		
1.	Chalk and Talk	1.	IA tests	
2.	PPT and Videos	2.	Open Book Assignments (OBA)/ Lab Project	
3.	Flipped Classes	3.	Lab Test	
4.	Practice session/Demonstrations in Labs	4.	Semester End Examination	
5.	Virtual Labs (if present)			

	Course Outcome (COs)						
Lear	ning Levels: Re - Remember; Un - Understand; Ap - Apply; An - A	nalysis; Ev -	Evaluate	; Cr -			
Crea	te						
At th	e end of the course, the student will be able to	Learning	PO(s)	PSO(s)			
		Level	- (-7	(-)			
	Apply the knowledge of multiple integrals to compute area and		1				
1	volume and Understand the applications of vector calculus	L1, L2					
1.	refer to solenoidal, irrotational vectors, line integral and surface	and L3					
	integral.						
	Apply the knowledge of numerical methods in analyzing the	1112	1				
2.	discrete data and for solving the physical and engineering	and L_2					
	problems.	and L5					
2	Demonstrate partial differential equations and their solutions		1				
5.	for physical interpretations.	and L3					
Λ	Familiarize with modern mathematical tool namely MATLAR	L1, L2	5				
4.	rammanze with modern mathematical tool namely WATLAD	and L3					

	THE	ORY (60 marks)	LAB (40 I	marks)			
IA tost 1	IA test 2	Assignment (OBA/Lab Project/	Conduction	Lab tast	Total		
TA LEST I	ia lest z	Industry assignment)	Conduction	Lab lest			
25 marks	25 marks	10 marks 15 marks 25 marks		25 marks	100 marks		
IA Test:							
1. No obje	ctive part in	IA question paper					
2. All ques	tions descri	otive					
Conduct o	f Lab:						
1. Conduct	ting the expe	eriment and journal: 5 marks					
2. Calculat	ions, results	, graph, conclusion and Outcome: 1	10 marks				
Lab test: (Batch wise v	with 15 students/batch)					
1. Test wil	l be conduct	ed at the end of the semester					
2. Timetab	le, Batch de	tails and examiners will be declared	d by Exam sectio	on			
3. Conduct	ting two exp	periments and writing report: 5x 2 =	=10 marks				
4. Calculat	ions, results	, graph and conclusion for two exp	periments : 5x 2	=10 marks			
5. Viva voo	e:05 marks						
Eligibility	or SEE:						
1. 40% and	above (24	marks and above) in theory compo	nent				
2. 40% and	above (16	marks and above) in lab componen	t				
3. Lab test	is COMPUL	SORY					
4. Not elig	ible in any o	ne of the two components will mak	ke the student N	ot Eligible for	SEE		
	THE	ORY (60 marks)	LAB (40 ı	marks)			
IA test 1	IA test 2	Assignment (OBA/Lab Project/	Conduction	Conduction Lab	Lab test	Total	
		Industry assignment)					
25 marks	25 marks	10 marks	15 marks	25 marks	100 marks		
IA Test:							
1. No obje	ctive part in	IA question paper					
2. All ques	tions descrip	otive					
Conduct o	f Lab:						
1. Conduct	ing the expe	eriment and journal: 5 marks					
2. Calculat	ions, results	, graph, conclusion and Outcome: 5	5 marks				
3. VIVa voce: 5 marks							
Lab test: (Lab test: (Batchwise with 15 students/batch)						
1. Lest will be conducted at the end of the semester							
2. Conducting the experiment and writing report. E marks							
A Calculations results graph and conclusion: 10 marks							
4. Calculations, results, graph and conclusion: 10 marks							
Eligibility for see:							
2 /10% and	$\frac{1}{2}$ above (24)	marks and above) in lab componen	t				
2. 40/0 and 3. Lah test	2. 40% and above (16 marks and above) in iab component						
5. Lab (25)	3. Lad test is cuivipulsuky						

Scheme of Semester End Examination (SEE):

1.	It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the
	calculation of SGPA and CGPA.

- 2. Minimum marks required in SEE to pass: Score should be ≥35 &, however overall score of CIE+SEE should be ≥40%.
- 3. Question paper contains three parts A(30 marks),B(50 marks) and C (20 marks).

1. From Part A answer any 5 questions each Question Carries 6 Marks.

2. From Part B answer any one full question from each unit and each Question Carries 10 Marks.

3. From Part C answer any one full question and each Question Carries 20 Marks.

Rubrics:

Levels	Target
1(Low)	
2(Medium)	
3(High)	

	CO-PO Mapping (planned)										Марр	CO-PSO ping(pla	nned)		
60	РО	РО	PO	PO1	РО	PO	PSO	PSO	PSO						
0	1	2	3	4	5	6	7	8	9	0	11	12	1	2	3
1	1														
2	1														
3	1														
4					1										
5															
6															
	Tick mark the CO, PO and PSO mapping														

Mathematics for CSE/ISE Stream-II

Course Code	22MATS21	Course Integrated type		Credits L-T-P	3 - 0- 1
Hours/week: L-T-P	3 - 0 - 2		Total credits	4	
Total Contact Hours	L = 40 Hrs; T = 0 H	CIE Marks	100		
	Total = 60 Hrs				
Flipped Classes		SEE Marks	100		
content		100			

	Course learning objectives
1.	Familiarize the importance of Integral calculus and Vector calculus essential
2.	Learn vector spaces and linear transformations.
3.	Develop the knowledge of numerical method and apply to solve transcendental and
	Differential equations.

Required Knowledge of : Basic Trigonometry, Calculus, Algebra, Matrices, I Semester knowledge

Contact Hours = 8 Hours					
Introduction to Integral Calculus in Computer Science/IS& Engineering.					
evaluation of double integrals by					
es. Applications to find Area and					
n between Beta and Gamma					
optimum value in various					
1, L2 and L3)					
Unit – II Contact Hours = 8 Hours					
Introduction to Vector Calculus in Computer Science/IS& Engineering.					
Scalar and vector fields. Gradient, directional derivative, curl and divergence - physical					
ems.					

Curvilinear coordinates:Scale factors, base vectors, Cylindrical polar coordinates, Spherical polar coordinates, transformation between cartesian and curvilinear systems, orthogonality. Problems.

Applications: Conservation of laws, Electrostatics, Analysis of stream lines. (RBT Levels: L1, L2 and L3)

Unit – III Contact Hours = 8 Hours						
Importance of numerical methods for discrete data in the field of Computer Science/IS						
Engineering.						
Solution of algebraic and transcendental equations - Regula-Falsi and Newton-Raphson						
methods (only formulae). Problems.						
Finite differences, Interpolation using Newton's forward and backward difference formulae,						
Newton's divided difference formula and Lagrange's interpol	lation formula (All formulae					
without (proof). Problems.						
Numerical integration: Trapezoidal, Simpson's (1/3) rd and (3	8/8) th rules (without proof).					
Problems.						
Applications: Estimating the approximate roots, extremum values, Area, volume, surface						
area. Errors in finite precision.(RBT Levels: L1, L2 and L3)						
Unit –IV	Contact Hours = 8 Hours					

Introduction to various numerical techniques for handling Computer Science/IS& Engineering applications.

Numerical Solution of Ordinary Differential Equations (ODE's):Numerical solution of ordinary differential equations of first order and first degree – Taylor's series method, Modified Euler's method, Runge-Kutta method of fourth order and Milne's predictor-corrector formula (No derivations of formulae). Problems.

Applications: Estimating the approximate solutions of ODE.(RBT Levels: L1, L2 and L3).

U	nit	–v
v	III.	— v

Contact Hours = 8 Hours

Importance of Vector Space and Linear Transformations in the field of Computer Science/IS & Engineering.

Vector spaces: Definition and examples, subspace, linear span, Linearly independent and dependent sets, Basis and dimension. Problems.

Linear transformations: Definition and examples, Algebra of transformations, Matrix of a linear transformation. Change of coordinates, Rank and nullity of a linear operator, rank-nullity theorem. Inner product spaces and orthogonality. Problems.

Applications: Image processing, AI & ML, Graphs and networks, computer graphics. **(RBT Levels: L1, L2 and L3)**

Flipped Classroom Details

Unit No.	I	II	III	IV	V
No. for Flipped	2	2	2	2	2
Classroom Sessions					
··· · · · ·					

List of Experiments

Unit No.	No. of Experiments	Topic(s) related to Experiment				
1	1	Program to compute area, surface area, volume and centre of gravity				
1	2	Evaluation of improper integrals				
2	3	Finding gradient, divergent, curl and their geometrical interpretation				

5	4	Computation of basis and dimension for a vector space and Graphical
_		representation of linear transformation.
5	5	Computing the inner product and orthogonality
3	6	Solution of algebraic and transcendental equation by Ramanujan's, Regula-Falsi and Newton-Raphson method
3	7	Interpolation/Extrapolation using Newton's forward and backward
		difference formula
3	8	Computation of area under the curve using Trapezoidal, Simpson's
		$(1/3)^{rd}$ and $(3/8)^{th}$ rule
4	9	Solution of ODE of first order and first degree by Taylor's series and
		Modified Euler's method
4	10	Solution of ODE of first order and first degree by Runge-Kutta 4th order
		and
		Milne's predictor-corrector method

Unit No.	Self-Study Topics
1	Center of gravity, Duplication formula.
2	Volume integral.
3	Ramanujan's method, Bisection method, Lagrange's inverse Interpolation, Weddle's
	rule.
4	Adam-Bashforth method.
5	Angles and Projections. Rotation, reflection, contraction and expansion

	Books
	Text Books:
1	B. S. Grewal: "Higher Engineering Mathematics" Khanna publishers, 44th Ed., 2021.
2	E. Kreyszig : "Advanced Engineering Mathematics" John Wiley & Sons, 10th Ed., 2018.
	Reference Books:
1	V. Ramana: "Higher Engineering Mathematics" McGraw-Hill Education, 11th Ed., 2017
2	Srimanta Pal & Subodh C. Bhunia: "Engineering Mathematics" Oxford University Press, 3rd
	Ed., 2016.
3	N.P Bali and Manish Goyal: "A textbook of Engineering Mathematics" Laxmi Publications,
	10th Ed., 2022.
4	C. Ray Wylie, Louis C. Barrett: "Advanced Engineering Mathematics"McGraw –HillBook
	Co., Newyork, 6th Ed., 2017.
5	Gupta C.B, Sing S.R and Mukesh Kumar: "Engineering Mathematic for Semester I andII",
	Mc-Graw Hill Education(India) Pvt. Ltd 2015.
6	H. K. Dass and Er. Rajnish Verma: "Higher Engineering Mathematics"S. Chand
	Publication, 3rd Ed., 2014.

7	James Stewart: "Calculus" Cengage Publications, 7th Ed., 2019.
8	David C Lay: "Linear Algebra and its Applications", Pearson Publishers, 4th Ed., 2018
9	Gareth Williams: "Linear Algebra with applications", Jones Bartlett Publishers Inc., 6 th Ed.,
	2017.
	E-resourses (NPTEL/SWAYAM Any Other)- mention links
1	https://www.youtube.com/watch?v=ksS_yOK1vtk&list=PLbRMhDVUMngflrZCNOyPZwHUU1pP66vQ
	W&ab_channel=IITKharagpurJuly2018
2	https://www.youtube.com/watch?v=TWAN_T66Cps&list=PLq-
	Gm0yRYwTguDcfylj1ZicXxzdZCAr5S&ab_channel=NumericalMethods
3	https://www.youtube.com/watch?v=zT83sJ5IrEE&list=PLyqSpQzTE6M-
	QT7PvEBHV0iNMvZk9mocO&ab_channel=nptelhrd
4	https://www.youtube.com/watch?v=LJ-
	LoJhbBA4&list=PLbMVogVj5nJQ2vsW_hmyvVfO4GYWaaPp7&ab_channel=nptelhrd
5	

Course delivery methods			Assessment methods				
1.	Chalk and Talk	1.	IA tests				
2.	PPT and Videos	2.	Open Book Assignments (OBA)/ Lab Project				
3.	Flipped Classes	3.	Lab Test				
4.	Practice session/Demonstrations in Labs	4.	Semester End Examination				
5.	Virtual Labs (if present)						

	Course Outcome (COs)						
Lear	ning Levels:						
	Re - Remember; Un - Understand; Ap - Apply; An - Analysis; Ev -	Evaluate;	Cr - Creat	e			
At th	At the end of the course, the student will be able to Learning Level						
	Apply the knowledge of multiple integrals to compute area and		1				
1	volume and Understand the applications of vector calculus	L1, L2					
<u>1</u> .	refer to solenoidal, irrotational vectors, orthogonal curvilinear	and L3					
	coordinates.						
2.	Apply the knowledge of numerical methods in analyzing the discrete data and for solving the physical and engineering problems.	L1, L2 and L3	1				
2	Demonstrate the idea of Linear dependence and independence	L1, L2	1				
5.	of sets in the vector space, and linear transformation.	and L3					
Λ	Familiarize with modern methometical tool nemely MATLAP	L1, L2	5				
4.	rammanze with modern mathematical tool namely MATLAB	and L3					

	THE	ORY (60 marks)	LAB (40 I	marks)		
		Assignment (OBA/Lab Project/		1.1.1.1.1	Total	
IA test 1	IA test 2	Industry assignment)	Conduction	Lab test		
25 marks	25 marks	10 marks	15 marks	100 marks		
IA Test:			L			
1. No obje	ctive part in	IA question paper				
2. All ques	tions descrij	otive				
Conduct o	f Lab:					
1. Conduct	ting the expe	eriment and journal: 5 marks				
2. Calculat	ions, results	, graph, conclusion and Outcome: 2	10 marks			
Lab test: (Batch wise v	with 15 students/batch)				
1. Test will	l be conduct	ed at the end of the semester				
2. Timetab	ole, Batch de	tails and examiners will be declare	d by Exam sectio	on		
3. Conduct	ting two exp	periments and writing report: 5x 2 =	=10 marks			
4. Calculat	ions, results	, graph and conclusion for two exp	eriments : 5x 2	=10 marks		
5. Viva voo	e:05 marks					
Eligibility f	or SEE:					
1. 40% and	d above (24	marks and above) in theory compo	nent			
2. 40% and	d above (16	marks and above) in lab componen	t			
3. Lab test	is COMPUL	SORY				
4. Not elig	ible in any o	ne of the two components will mal	ke the student N	ot Eligible for	SEE	
	THE	ORY (60 marks)	LAB (40 ı	marks)		
IA tost 1	IA tost 2	Assignment (OBA/Lab Project/	Conduction	Lah tost	Total	
	IA lest Z	Industry assignment)	conduction			
25 marks	25 marks	10 marks	15 marks	25 marks	100 marks	
IA Test:						
1. No obje	ctive part in	IA question paper				
2. All ques	tions descri	otive				
Conduct o	f Lab:					
1. Conduct	ting the expe	eriment and journal: 5 marks				
2. Calculat	ions, results	, graph, conclusion and Outcome: 5	5 marks			
3. Viva voo	e: 5 marks					
Lab test: (I	Batchwise w	vith 15 students/batch)				
1. Test will	l be conduct	ed at the end of the semester				
2. Timetab	ole, Batch de	tails and examiners will be declared	d by Exam sectio	on		
3. Conducting the experiment and writing report: 5 marks						
4. Calculations, results, graph and conclusion: 10 marks						
5. Viva voce: 10 marks						
Eligibility f	or SEE:					
1. 40% and above (24 marks and above) in theory component						
2. 40% and above (16 marks and above) in lab component						
3. Lab test	is COMPUL	SORY				
4. Not elig	4. Not eligible in any one of the two components will make the student Not Eligible for SEE					

Sch	Scheme of Semester End Examination (SEE):						
1.	It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the						
	calculation of SGPA and CGPA.						
2.	Minimum marks required in SEE to pass: Score should be ≥35 &, however overall score of CIE+SEE						
	should be ≥40%.						
3.	Question paper contains three parts A(30 marks),B(50 marks) and C (20 marks).						
	1. From Part A answer any 5 questions each Question Carries 6 Marks.						
	2. From Part B answer any one full question from each unit and each Question Carries 10 Marks.						
	3. From Part C answer any one full question and each Question Carries 20 Marks.						
Rub	Rubrics:						
	Levels Target						

I	_evels	Target
1(Low)		
2(Medium)		
3(High)		

				C		lannir	a (plar	anod)						CO-PSO	
				C	0-20 1	nahhii	ig (hiai	meu)					Марр	oing(pla	nned)
~	PO P							PSO	PSO	PSO					
	1	2	3	4	5	6	7	8	9	0	11	12	1	2	3
1	✓														
2	1														
3	1														
4					✓										
5															
6															
			Ti	ck mai	rk the (CO, PO	and P	SO ma	pping						

Mathematics for EEE Stream-II

Course Code	22MATE21	Course Integrated type		Credits L-T-P	3 - 0- 1	
Hours/week: L-T-P	3 - 0 - 2		Total credits	4		
Total Contact Hours	L = 40 Hrs; T = 0 H	Hrs;P = 20 Hrs	CIF Marks	100		
	Total = 60 Hrs					
Flipped Classes	10 Hours			SFF Marks	100	
content					100	

	Course learning objectives					
1.	Familiarize the importance of Integral calculus and Vector calculus essential for					
	Electronics and Electrical Engineering					
2.	Analyze Electronics and Electrical engineering problems applying Partial Differential					
	Equations					
3.	Develop the knowledge of solving Electronics and Electrical Engineering problems					
	numerically					

Required Knowledge of : Basic Trigonometry, Calculus, Algebra, Matrices, I Semester knowledge

Unit – I	Contact Hours = 8 Hours				
Introduction to Vector Calculus in EC & EE engineering applications.					
Vector Differentiation: Scalar and vector fields. Gradient, d.	irectional derivative, curl and				
divergence - physical interpretation, solenoidal and irrotation	al vector fields. Problems.				
Vector Integration: Line integrals, Surface integrals. Applic	ations to work done by a force				
and flux. Statement of Green's theorem and Stoke's theorem.	Problems.				
Applications: Conservation of laws, Electrostatics, Analysis	of stream lines and electric				
potentials.(RBT Levels: L1, L2 and L3)					
Unit – II Contact Hours = 8 Hours					
Importance of Vector Space and Linear Transformations in the field of EC & EE					
engineering applications.					

Vector spaces: Definition and examples, subspace, linear span, Linearly independent and dependent sets, Basis and dimension.

Linear transformations: Definition and examples, Algebra of transformations, Matrix of a linear transformation. Change of coordinates, Rank and nullity of a linear operator, Rank-Nullity theorem. Inner product spaces and orthogonality.

Applications: Image processing, AI & ML, Graphs and networks, computer graphics. (**RBT Levels: L1, L2 and L3**)

Unit – III	Contact Hours = 8 Hours		
Importance of numerical methods for discrete data in the	field of EC & EE engineering		
applications.			
Solution of polynomial and transcendental equations: Regula	-Falsi method and Newton-		
Raphson method (only formulae). Problems. Finite differences, Interpolation using Newton's			
forward and backward difference formulae, Newton's divided	difference formula and		

Lagrange's interpolation formula (All formulae without proof). Problems.

Numerical integration: Trapezoidal, Simpson's (1/3)rd and (3/8)th rules (without proof). Problems.

Applications: Estimating the approximate roots, extremum values, Area, volume, surface area.(**RBT Levels: L1, L2 and L3**)

Unit –IV

Contact Hours = 8 Hours

Introduction to various numerical techniques for handling EC & EE applications. Numerical Solution of Ordinary Differential Equations (ODE's):

Numerical solution of ordinary differential equations of first order and first degree - Taylor's

series method, Modified Euler's method, Runge-Kutta method of fourth order and Milne's predictor corrector formula (No derivations of formulae). Problems.

Applications: Estimating the approximate solutions of ODE for electric circuits.

(RBT Levels: L1, L2 and L3)

Unit –V	Contact Hours = 8 Hours				
Importance of Laplace Transform for EC & EE engineering applications.					
Existence and Uniqueness of Laplace transform (LT), transfor	rm of elementary functions,				
region of convergence, Properties-Linearity, Scaling, t-shift p	property, s-domain shift,				
differentiation in the sdomain, division by t, differentiation and	d integration in the time domain,				
LT of special functions periodic functions (square wave, saw-	tooth wave, triangular wave, full				
& half wave rectifier), Heaviside Unit step function, Unit imp	ulse function.				
Inverse Laplace Transforms: Definition, properties, evaluation	on using different methods,				
convolution theorem (without proof), problems, and Applicat	ions to solve ordinary differential				
equations.					
Applications: Signals and systems, Control systems, LR, CR	& LCR circuits.				

(RBT Levels: L1, L2 and L3)

Unit No.	I	II	III	IV	V
No. for Flipped	2	2	2	2	2
Classroom Sessions					

Flipped Classroom Details

	No. of	Tonic(a) related to Evroviment	
Unit NO.	Experiments	Topic(s) related to experiment	
1	1	Finding gradient, divergent, curl and their geometrical interpretation and	
		Verification of Green's theorem	
2	2	Computation of basis and dimension for a vector space and Graphical	
		representation of linear transformation	
5	3	Visualization in time and frequency domain of standard functions	
5	4	Computing inverse Laplace transform of standard functions	
5	5	Laplace transform of convolution of two functions	
3		Computing the approximate roots for algebraic and transcendental	
	6	equation	
3 7 Interpolation/Extrapolation using New		Interpolation/Extrapolation using Newton's forward and backward	
		difference formula	
3	8	Computation of area under the curve using Trapezoidal, Simpson's	
		$(1/3)^{rd}$ and $(3/8)^{th}$ rule	
4	9	Solution of ODE of first order and first degree by Taylor's series and	
		Modified Euler's method	
4	10	Solution of ODE of first order and first degree by Runge-Kutta 4th order	
		and Milne's predictor-corrector method	

List of Experiments

Unit No.	Self-Study Topics
1	Volume integral and Gauss divergence theorem.
2	Angles and Projections. Rotation, reflection, contraction and expansion
3	Verification of convolution theorem.
4	Bisection method, Lagrange's inverse Interpolation, Weddle's rule
5	Adam-Bashforth method

	Books			
	Text Books:			
1	B. S. Grewal: "Higher Engineering Mathematics" Khanna publishers, 44th Ed., 2021.			
2	E. Kreyszig : "Advanced Engineering Mathematics" John Wiley & Sons, 10th Ed., 2018.			
	Reference Books:			

1	V. Ramana: "Higher Engineering Mathematics" McGraw-Hill Education, 11th Ed., 2017				
2	Srimanta Pal & Subodh C. Bhunia: "Engineering Mathematics" Oxford University Press, 3rd				
	Ed., 2016.				
3	N.P Bali and Manish Goyal: "A textbook of Engineering Mathematics" Laxmi Publications,				
	10th Ed., 2022.				
4	C. Ray Wylie, Louis C. Barrett: "Advanced Engineering Mathematics"McGraw –HillBook				
	Co., Newyork, 6th Ed., 2017.				
5	Gupta C.B, Sing S.R and Mukesh Kumar: "Engineering Mathematic for Semester I andII",				
	Mc-Graw Hill Education(India) Pvt. Ltd 2015.				
6	H. K. Dass and Er. Rajnish Verma: "Higher Engineering Mathematics"S. Chand				
	Publication, 3rd Ed., 2014.				
7	James Stewart: "Calculus" Cengage Publications, 7th Ed., 2019.				
8	David C Lay: "Linear Algebra and its Applications", Pearson Publishers, 4th Ed., 2018				
9	Gareth Williams: "Linear Algebra with applications", Jones Bartlett Publishers Inc., 6 th Ed.,				
	2017.				
	E-resourses (NPTEL/SWAYAM Any Other)- mention links				
1	https://www.youtube.com/watch?v=ksS_yOK1vtk&list=PLbRMhDVUMngflrZCNOyPZwHUU1pP66vQ				
	W&ab_channel=IITKharagpurJuly2018				
2	https://www.youtube.com/watch?v=TWAN_T66Cps&list=PLq-				
	Gm0yRYwTguDcfylj1ZicXxzdZCAr5S&ab_channel=NumericalMethods				
3	https://www.youtube.com/watch?v=zT83sJ5IrEE&list=PLyqSpQzTE6M-				
	QT7PvEBHV0iNMvZk9mocO&ab_channel=nptelhrd				
4	https://www.youtube.com/watch?v=d7NF-				
	_8vVv4&list=PLyqSpQzTE6M8gnapvdLN92hs_4F75OSuH&index=1&ab_channel=NPTEL-NOCIITM				

Course delivery methods			Assessment methods		
1.	Chalk and Talk	1.	IA tests		
2.	PPT and Videos	2.	Open Book Assignments (OBA)/ Lab Project		
3.	Flipped Classes	3.	Lab Test		
4.	Practice session/Demonstrations in Labs	4.	Semester End Examination		
5.	Virtual Labs (if present)				

	Course Outcome (COs)							
Lear	Learning Levels:							
	Re - Remember; Un - Understand; Ap - Apply; An - Analysis; Ev - Evaluate; Cr - Create							
At the end of the course, the student will be able to Level PO(s)								
	Understand the applications of vector calculus refer to		1					
1.	solenoidal, irrotational vectors, line integral and surface	L1, L2						
	integral and Demonstrate the idea of Linear dependence and	and L3						
	independence of sets in the vector space, and linear							

	transformation			
2.	Apply the knowledge numerical methods in analyzing discrete	L1, L2	1	
	data and solving physical and engineering phenomena.	and L3		
3.	To understand the concept of Laplace transform and to solve	L1, L2	1	
	initial value problems	and L3		
Λ	Get familiarize with modern mathematical tools namely	L1, L2	5	
4.	MATLAB	and L3		

•	THE	ORY (60 marks)	LAB (40 I	marks)					
		Assignment (OBA/Lab Project/			Total				
IA test 1	IA test 2	Industry assignment)	Conduction	Lab test					
25 marks	25 marks	10 marks	15 marks	25 marks	100 marks				
IA Test:	IA Test:								
1. No obje	ctive part in	IA question paper							
2. All ques	tions descrij	otive							
Conduct o	f Lab:								
1. Conduct	ting the exp	eriment and journal: 5 marks							
2. Calculat	ions, results	, graph, conclusion and Outcome: 1	L0 marks						
Lab test: (Batch wise v	with 15 students/batch)							
1. Test wil	be conduct	ed at the end of the semester							
2. Timetab	le, Batch de	tails and examiners will be declared	d by Exam sectio	on					
3. Conduct	ting two exp	periments and writing report: 5x 2 =	=10 marks						
4. Calculat	ions, results	, graph and conclusion for two exp	eriments : 5x 2	=10 marks					
5. Viva voo	e:05 marks								
Eligibility	or SEE:								
1. 40% and	d above (24	marks and above) in theory compo	nent						
2. 40% and	d above (16	marks and above) in lab componen	t						
3. Lab test	is COMPUL	SORY							
4. Not elig	ible in any o	ne of the two components will make	ke the student N	ot Eligible for	SEE				
	THE	ORY (60 marks)	LAB (40 ı	marks)					
IA tost 1	IA tost 2	Assignment (OBA/Lab Project/	Conduction	Lah tost	Total				
		Industry assignment)	conduction						
25 marks	25 marks	10 marks	15 marks	25 marks	100 marks				
IA Test:									
1. No objective part in IA question paper									
2. All questions descriptive									
Conduct of Lab:									
1. Conduct	ting the exp	eriment and journal: 5 marks							
2. Calculat	ions, results	, graph, conclusion and Outcome: 5	5 marks						
3. Viva voo	e: 5 marks								

Lab test: (Batchwise with 15 students/batch)

- 1. Test will be conducted at the end of the semester
- 2. Timetable, Batch details and examiners will be declared by Exam section
- 3. Conducting the experiment and writing report: 5 marks
- 4. Calculations, results, graph and conclusion: 10 marks

5. Viva voce: 10 marks

Eligibility for SEE:

- 1. 40% and above (24 marks and above) in theory component
- 2. 40% and above (16 marks and above) in lab component
- 3. Lab test is COMPULSORY
- 4. Not eligible in any one of the two components will make the student Not Eligible for SEE

Scheme of Semester End Examination (SEE):

1.	It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the
	calculation of SGPA and CGPA.

2. Minimum marks required in SEE to pass: Score should be \geq 35 &, however overall score of CIE+SEE should be \geq 40%.

3. Question paper contains three parts A(30 marks), B(50 marks) and C (20 marks).

1. From Part A answer any 5 questions each Question Carries 6 Marks.

2. From Part B answer any one full question from each unit and each Question Carries 10 Marks.

3. From Part C answer any one full question and each Question Carries 20 Marks.

Rubrics:

Levels	Target
1(Low)	
2(Medium)	
3(High)	

				<u> </u>		Annir	ng (plai	anad)						CO-PSO)
				U	0-PU I	viappii	ig (piai	ineu)					Марр	oing(pla	nned)
~	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO1	РО	РО	PSO	PSO	PSO
0	1	2	3	4	5	6	7	8	9	0	11	12	1	2	3
1	1														
2	1														
3	1														
4					1										
5															
6															
	Tick mark the CO, PO and PSO mapping														

Mathematics for ME/AE Engineering Stream-II

Course Code	22MATM21	Course type	integrated	Credits L-T-P	3 - 0- 1
Hours/week: L-T-P	3 - 0 - 2			Total credits	4
Total Contact Hours	L = 40 Hrs; T = 0 H Total = 60 Hrs	lrs;P = 20 Hrs	CIE Marks	100	
Flipped Classes content	10 Hours			SEE Marks	100

	Course learning objectives				
1.	Familiarize the importance of Integral calculus and Vector calculus essential for				
	ME/AE Engineering.				
2.	Analyze ME/AE Engineering problems applying Partial Differential Equations.				
3.	Develop the knowledge of solving ME/AE Engineering problems numerically.				
4.	Familiarize the importance of Integral calculus and Vector calculus essential for				
	ME/AE Engineering.				

Required Knowledge of : Basic Trigonometry, Calculus, Algebra, Matrices, I Semester knowledge

Unit – I	Contact Hours = 8 Hours			
Introduction to Integral Calculus in ME/AE Engineering	applications.			
Multiple Integrals: Evaluation of double and triple integrals,	, evaluation of double integrals			
by change of order of integration, changing into polar coordin	ates. Applications to find Area			
and Volume by double integral. Problems.				
Beta and Gamma functions: Definitions, properties, relation	1 between Beta and Gamma			
functions. Problems.				
Applications: Applications to mathematical quantities (Area,	, Surface area, Volume), Analysis			
of probabilistic models.(RBT Levels: L1, L2 and L3)				
Unit – II	Contact Hours = 8 Hours			
Introduction to Vector Calculus in ME/AE Engineering applications.				
Vector Differentiation: Scalar and vector fields. Gradient, directional derivative, curl and				
divergence - physical interpretation, solenoidal and irrotational vector fields. Problems.				
Vector Integration: Line integrals, Surface integrals. Applic	ations to work done by a force			
and flux. Statement of Green's theorem and Stoke's theorem.	Problems			

Applications: Heat and mass transfer, oil refinery problems, environmental engineering. Analysis of stream lines, velocity and acceleration of a moving particle. (RBT Levels: L1, L2 and L3)

Unit – III	Contact Hours = 8 Hours			
Importance of numerical methods for discrete data in the	field of ME/AEEngineering.			
Solution of algebraic and transcendental equations: Regula-Falsi and Newton-Raphson				
methods (only formulae). Problems. Finite differences, Interpolation using Newton's forward				
and backward difference formulae, Newton's divided difference formula and Lagrange's				
interpolation formula (All formulae without proof). Problems.				
Numerical integration : Trapezoidal, Simpson's (1/3) rd and (3/8) th rules (without proof).				
Problems.				
Applications: Finding approximate solutions to solve ME/AE engineering problems involving				
numerical data.(RBT Levels: L1, L2 and L3)				

Unit –IV	Contact Hours = 8 Hours
Introduction to various numerical techniques for handlin	g ME/AE Engineering

applications.

Numerical Solution of Ordinary Differential Equations (ODE's): Numerical solution of ordinary differential equations of first order and first degree – Taylor's series method, Modified Euler's method, Runge-Kutta method of fourth order and Milne's predictor-corrector formula (No derivations of formulae). Problems.

Applications: Finding approximate solutions to ODE related to ME/AE engineering fields.

Importance of partial differential equations for ME/AE Engineering application.				
Formation of PDE's by elimination of arbitrary constants and functions. Solution of non				
homogeneous PDE by direct integration. Homogeneous PDEs involving derivative with				
respect to one independent variable only. Solution of Lagrange's linear PDE. Derivation of the				
one dimensional heat equation and wave equation				
Applications: Vibration of a rod/membrane.(RBT Levels: L1, L2 and L3)				

Flipped Classroom Details					
Unit No.	I	II	III	IV	V
No. for Flipped Classroom Sessions	2	2	2	2	2
List of Experiments					

Unit No.	No. of Experiments	Topic(s) related to Experiment
1	1	Program to compute surface area, volume and centre of gravity
1	2	Evaluation of improper integrals
2	3	Finding gradient, divergent, curl and their geometrical interpretation
2	4	Verification of Green's theorem
5	5	Solution of one-dimensional heat equation and wave equation
3		Solution of algebraic and transcendental equations by Regula-Falsi and
	6	

		Newton-Raphson method
3	7	Interpolation/Extrapolation using Newton's forward and backward
		difference formula
3	8	Computation of area under the curve using Trapezoidal, Simpson's
		$(1/3)^{rd}$ and $(3/8)^{th}$ rule
4	9	Solution of ODE of first order and first degree by Taylor's series and
		Modified Euler's method
4	10	Solution of ODE of first order and first degree by Runge-Kutta 4 th order
		and Milne's method

Unit No.	Self-Study Topics
1	Volume by triple integration, Centre of gravity.
2	Volume integral and Gauss divergence theorem.
3	Bisection method, Lagrange's inverse Interpolation, Weddle's rule.
4	Adam-Bashforth method
5	Solution of one-dimensional heat equation and wave equation by the method of
	Separation of variables

	Books
	Text Books:
1	B. S. Grewal: "Higher Engineering Mathematics" Khanna publishers, 44th Ed., 2021.
2	E. Kreyszig: "Advanced Engineering Mathematics" John Wiley & Sons, 10th Ed., 2018.
	Reference Books:
1	V. Ramana: "Higher Engineering Mathematics" McGraw-Hill Education, 11th Ed., 2017
2	Srimanta Pal & Subodh C. Bhunia: "Engineering Mathematics" Oxford University Press, 3rd
	Ed., 2016.
3	N.P Bali and Manish Goyal: "A textbook of Engineering Mathematics" Laxmi Publications,
	10th Ed., 2022.
4	C. Ray Wylie, Louis C. Barrett: "Advanced Engineering Mathematics"McGraw –HillBook
	Co., Newyork, 6th Ed., 2017.
5	Gupta C.B, Sing S.R and Mukesh Kumar: "Engineering Mathematic for Semester I and
	II", Mc-Graw Hill Education(India) Pvt. Ltd 2015.
6	H. K. Dass and Er. Rajnish Verma: "Higher Engineering Mathematics"S. Chand
	Publication, 3rd Ed., 2014.
7	James Stewart: "Calculus" Cengage Publications, 7th Ed., 2019.

8	David C Lay: "Linear Algebra and its Applications", Pearson Publishers, 4th Ed., 2018
9	Gareth Williams: "Linear Algebra with applications", Jones Bartlett Publishers Inc., 6 th Ed.,
	2017.
	E-resourses (NPTEL/SWAYAM Any Other)- mention links
1	https://www.youtube.com/watch?v=ksS_yOK1vtk&list=PLbRMhDVUMngflrZCNOyPZwHUU1pP66vQ
	W&ab_channel=IITKharagpurJuly2018
2	https://www.youtube.com/watch?v=TWAN_T66Cps&list=PLq-
	Gm0yRYwTguDcfyIj1ZicXxzdZCAr5S&ab_channel=NumericalMethods
3	https://www.youtube.com/watch?v=zT83sJ5IrEE&list=PLyqSpQzTE6M-
	QT7PvEBHV0iNMvZk9mocO&ab_channel=nptelhrd
4	https://www.youtube.com/watch?v=p8u0Fc63OYg&list=PLOzRYVm0a65eWglxWw5WzQLrIG2EaiTli&
	index=24&ab_channel=IITBombayJuly2018

	Course delivery methods	Assessment methods				
1.	Chalk and Talk	1.	IA tests			
2.	PPT and Videos	2.	Open Book Assignments (OBA)/ Lab Project			
3.	Flipped Classes	3.	Lab Test			
4.	Practice session/Demonstrations in Labs	4.	Semester End Examination			
5.	Virtual Labs (if present)					

	Course Outcome (COs)									
Learning Levels: Re - Remember; Un - Understand; Ap - Apply; An - Analysis; Ev - Evaluate; Cr -										
	Create									
At th	e end of the course, the student will be able to	Learning Level	PO(s)	PSO(s)						
	Apply the knowledge of multiple integrals to compute area and		1							
1	volume and Understand the applications of vector calculus	L1, L2								
1.	refer to solenoidal, irrotational vectors, line integral and surface	and L3								
	integral.									
	Apply the knowledge of numerical methods in analyzing the	L1 L2	1							
2.	discrete data and for solving the physical and engineering	and $L3$								
	problems.									
2	Demonstrate partial differential equations and their solutions	L1, L2	1							
5.	for physical interpretations.	and L3								
4	Equilibrize with modern methomotical tool nemely MATLAD	L1, L2	5							
4.	rammanze with modern mathematical tool namely MATLAB	and L3								
<u> </u>		•		•						

	THE	ORY (60 marks)	LAB (40 ı	marks)	
IA tost 1	IA tost 2	Assignment (OBA/Lab Project/	Conduction	Lab tost	Total
IA LEST I	ia lest z	Industry assignment)	Conduction	Lab lest	

25 marks	25 marks	10 marks	15 marks	25 marks	100 marks
IA Test:					
1. No obje	ctive part in	IA question paper			
2. All ques	tions descri	otive			
Conduct o	f Lab:				
1. Conduct	ting the expe	eriment and journal: 5 marks			
2. Calculat	ions, results	, graph, conclusion and Outcome: 1	L0 marks		
Lab test: (Batch wise v	with 15 students/batch)			
1. Test wil	l be conduct	ed at the end of the semester			
2. Timetab	le, Batch de	tails and examiners will be declared	d by Exam sectio	on	
3. Conduct	ting two exp	periments and writing report: 5x 2 =	=10 marks		
4. Calculat	ions, results	, graph and conclusion for two exp	eriments : 5x 2	=10 marks	
5. Viva voo	e:05 marks				
Eligibility f	or SEE:				
1. 40% and	d above (24	marks and above) in theory compo	nent		
2. 40% and	d above (16	marks and above) in lab componen	t		
3. Lab test	is COMPUL	SORY			
4. Not elig	ible in any o	ne of the two components will mak	ke the student N	ot Eligible for	SEE
	THE	ORY (60 marks)	LAB (40	marks)	
IA tost 1	IA tost 2	Assignment (OBA/Lab Project/	Conduction	Lab tast	Total
IA lest I	ia lest z	Industry assignment)	Conduction	Lab lest	
25 marks	25 marks	10 marks	15 marks	25 marks	100 marks
IA Test:					
1. No obje	ctive part in	IA question paper			
2. All ques	tions descri	otive			
Conduct o	f Lab:				
1. Conduct	ting the expe	eriment and journal: 5 marks			
2. Calculat	ions, results	, graph, conclusion and Outcome: 5	5 marks		
3. Viva voo	e: 5 marks				
Lab test: (Batchwise w	vith 15 students/batch)			
1. Test wil	l be conduct	ed at the end of the semester			
2. Timetab	ole, Batch de	tails and examiners will be declared	d by Exam sectio	on	
3. Conduct	ting the expe	eriment and writing report: 5 marks	5		
4. Calculat	ions, results	, graph and conclusion: 10 marks			
5. Viva voo	e: 10 marks				
Eligibility	or SEE:				
1. 40% and	above (24	marks and above) in theory compo	nent		
2. 40% and	above (16	marks and above) in lab componen	t		
3. Lab test	is COMPUL	SORY			
4. Not elig	ible in any o	ne of the two components will mak	ke the student N	ot Eligible for	SEE

Scheme of Semester End Examination (SEE):

1.	It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the
	calculation of SGPA and CGPA.
2.	Minimum marks required in SEE to pass: Score should be ≥35 &, however overall score of CIE+SEE
	should be ≥40%.
3.	Question paper contains three parts A(30 marks), B(50 marks) and C (20 marks).
	Students have to answer
	1. From Part A answer any 5 questions each Question Carries 6 Marks.
	2. From Part B answer any one full question from each unit and each Question Carries 10 Marks.
	3. From Part C answer any one full question and each Question Carries 20 Marks.
Rub	rics:

Levels	Target
1(Low)	
2(Medium)	
3(High)	

	CO-PO Mapping (planned)									CO-PSO Mapping(planned)					
со	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO1	РО	РО	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	11	12	1	2	3
1	✓														
2	✓														
3	✓														
4					✓										
5															
6															
			Ti	ck mai	rk the (CO, PO	and P	SO ma	pping	•		•			