I Semester

Course Title: Mathematics for Civil Engineering Stream-I						
Course Code:	22MATC11 CIE Marks		50			
Course Type	Integrated	SEE Marks	50			
(Theory/Practical/Integrated)		Total Marks	100			
Teaching Hours/Week (L:T:P: S)	2:2:2:0 Exam Hours		03+02			
Total Hours of Pedagogy	40 hours Theory + 10-12 Lab slots	Credits	04			

Course objectives: The goal of the course **Calculus, Differential Equations and Linear Algebra** (22MATC11) is to

- **Familiarize** the importance of calculus associated with one variable and two variables for civil engineering.
- Analyze Civil engineering problems applying Ordinary Differential Equations.
- **Develop** the knowledge of Linear Algebra refereeing to matrices.

Teaching-Learning Process

Pedagogy (General Instructions):

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- 1. In addition to the traditional lecture method, different types of innovative teaching methods may be adopted so that the delivered lessons shall develop student's theoretical and applied mathematical skills.
- 2. State the need for Mathematics with Engineering Studies and Provide real-life examples.
- 3. Support and guide the students for self–study.
- 4. You will also be responsible for assigning homework, grading assignments and quizzes, and documenting students' progress.
- 5. Encourage the students for group learning to improve their creative and analytical skills.
- 6. Show short related video lectures in the following ways:
 - As an introduction to new topics (pre-lecture activity).
 - As a revision of topics (post-lecture activity).
 - As additional examples (post-lecture activity).
 - As an additional material of challenging topics (pre-and post-lecture activity).
 - As a model solution of some exercises (post-lecture activity).

Module-1 Calculus (8 hours)

Introduction to polar coordinates and curvature relating to Civil engineering.

Polar coordinates, Polar curves, angle between the radius vector and the tangent, angle between two curves. Pedal equations. Curvature and Radius of curvature - Cartesian, Parametric, Polar and Pedal forms. Problems.

Self-study: Center and circle of curvature, evolutes and involutes.

Applications: Structural design and paths, Strength of materials, Elasticity.

(RBT Levels: L1, L2 and L3)

Module-2 Series Expansion and Multivariable Calculus (8 hours)

Introduction to series expansion and partial differentiation in the field of Civil engineering applications.

Taylor's and Maclaurin's series expansion for one variable (Statement only) – problems. Indeterminate forms - L'Hospital's rule, problems.

Partial differentiation, total derivative - differentiation of composite functions. Jacobian and problems. Maxima and minima for a function of two variables. Problems.

Self-study: Euler's theorem and problems. Method of Lagrange's undetermined multipliers with single constraint.

Applications: Computation of stress and strain, Errors and approximations, Estimating the critical points and extreme values.

(RBT Levels: L1, L2 and L3)

Module-3 Ordinary Differential Equations (ODEs) of first order (8 hours)

Introduction to first order ordinary differential equations pertaining to the applications for the Civil engineering.

Linear and Bernoulli's differential equations. Exact and reducible to exact differential equations -Integrating factors on $\frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right)$ and $\frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right)$. Applications of ODE's - Orthogonal trajectories, Newton's law of cooling.

Nonlinear differential equations: Introduction to general and singular solutions, Solvable for p only, Clairaut's equations, reducible to Clairaut's equations. **Problems.**

Self-Study: Applications of ODE's: Solvable for x and y.

Applications: Rate of Growth or Decay, Conduction of heat.

(RBT Levels: L1, L2 and L3)

Module-4 Ordinary Differential Equations of higher order (8 hours)

Importance of higher-order ordinary differential equations in Civil Engineering applications.

Higher-order linear ODE's with constant coefficients - Inverse differential operator, method of variation of parameters, Cauchy's and Legendre's homogeneous differential equations. Problems.

Self-Study: Formulation and solution of Cantilever beam. Finding the solution by the method of undetermined coefficients.

Applications: Oscillations of a spring, Transmission lines, highway engineering.

(RBT Levels: L1, L2 and L3)

Module-5 Linear Algebra (8 hours)

Introduction of liner algebra related to Civil Engineering applications.

Elementary row transformation of a matrix, Rank of a matrix. Consistency and solution of a system of linear equations - Gauss-elimination method, Gauss-Jordan method and approximate solution by Gauss-Seidel method. Eigenvalues and Eigenvectors, Rayleigh's power method to find the dominant Eigenvalue and Eigenvector.

Self-Study: Solution of a system of linear equations by Gauss-Jacobi iterative method. Inverse of a square matrix by Cayley- Hamilton theorem.

Applications: Structural Analysis, Balancing equations.

(RBT Levels: L1, L2 and L3)

List of	Laboratory experiments (2 hours/week per batch/ batch strength 15)
10 lab	sessions + 1 repetition class + 1 Lab Assessment
1	2D plots for Cartesian and polar curves
2	Finding angle between polar curves, curvature and radius of curvature of a given curve
3	Finding partial derivatives Jacobian and plotting the graph
<u> </u>	Applications to Maxima and Minima of two variables
	Solution of first order differential equation and plotting the graphs
5	Solution of first order and reading with fractions with initial/houndary conditions
0	Solutions of Second order ordinary differential equations with initial/boundary conditions
7	Solution of a differential equation of oscillations of a spring/deflection of a beam with
	different loads
8 Numerical solution of system of linear equations, test for consistency and graphic	
representation	
9	Solution of system of linear equations using Gauss-Seidel iteration
10	Compute eigenvalues and eigenvectors and find the largest and smallest eigenvalue by
	Rayleigh power method.
Sugges	ted software's : Mathematica/MatLab/Python/Scilab
Course	outcome (Course Skill Set)
At the e	end of the course the student will be able to:
CO1	apply the knowledge of calculus to solve problems related to polar curves.
CO2	learn the notion of partial differentiation to compute rate of change multivariate functions.
CO3	Analyze the solution of linear and non linear ordinary differential equations.
CO4	make use of matrix theory for solving for system of linear equations and compute
	eigenvalues and eigenvectors.
CO5	familiarize with modern mathematical tools namely SCILAB/PYTHON/MATLAB
Assessi	nent Details (both CIE and SEE)
The we	ightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is
50%. T	he minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50).
The mi	nimum passing mark for the SEE is 35% of the maximum marks (18 marks out of 50). A
student	shall be deemed to have satisfied the academic requirements and earned the credits allotted to

each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination(SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation(CIE):

Two Unit Tests each of 20 Marks (duration 01 hour)

- First test after the completion of 30-40 % of the syllabus
- Second test after completion of 80-90% of the syllabus

One Improvement test before the closing of the academic term may be conducted if necessary.

However best two tests out of three shall be taken into consideration.

Two assignments each of 10 Marks

The teacher has to plan the assignments and get them completed by the students well before the closing of the term so that marks entry in the examination portal shall be done in time. Formative (Successive) Assessments include Assignments/Quizzes/Seminars/ Course projects/Field surveys/ Case studies/ Hands-on practice (experiments)/Group Discussions/ others. The Teachers shall choose the types of assignments depending on the requirement of the course and plan to attain the

Cos and POs. (to have a less stressed CIE, the portion of the syllabus should not be common /repeated for any of the methods of the CIE. Each method of CIE should have a different syllabus portion of the course). CIE methods /test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

The sum of two tests, two assignments, will be out of 60 marks and will be scaled down to 30 marks

CIE for the practical component of the Integrated Course

- On completion of every experiment/program in the laboratory, the students shall be evaluated and marks shall be awarded on the same day. The**15 marks** are for conducting the experiment and preparation of the laboratory record, the other **05 marks shall be for the test** conducted at the end of the semester.
- The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report. Each experiment report can be evaluated for 10 marks. Marks of all experiments' write-ups are added and **scaled down to 15 marks**.
- The laboratory test (duration 02/03 hours) at the end of the 14th /15th week of the semester /after completion of all the experiments (whichever is early) shall be conducted for 50 marks and scaled down to 05 marks.

Scaled-down marks of write-up evaluations and tests added will be CIE marks for the laboratory component of IPCC for **20 marks**.

Semester End Examination(SEE):

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject (**duration 03 hours**)

- The question paper shall be set for 100 marks. The medium of the question paper shall be English/Kannada). The duration of SEE is 03 hours.
- The question paper will have 10 questions. Two questions per module. Each question is set for 20 marks. The students have to answer 5 full questions, selecting one full question from each module. The student has to answer for 100 marks and **marks scored out of 100 shall be proportionally reduced to 50 marks**.

There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.

Suggested Learning Resources:

Books (Title of the Book/Name of the author/Name of the publisher/Edition and Year) Text Books

- 1. **B. S. Grewal**: "Higher Engineering Mathematics", Khanna publishers, 44th Ed., 2021.
- 2. **E. Kreyszig**: "Advanced Engineering Mathematics", John Wiley & Sons, 10th Ed., 2018.

Reference Books

- 1. **V. Ramana:** "Higher Engineering Mathematics" McGraw-Hill Education, 11th Ed., 2017
- 2. Srimanta Pal & Subodh C. Bhunia: "Engineering Mathematics" Oxford University Press, 3rd Ed., 2016.
- 3. **N.P Bali and Manish Goyal**: "A textbook of Engineering Mathematics" Laxmi Publications, 10th Ed., 2022.

4.	C. Ray Wylie,	Ray Wylie, Louis C. Barrett: "Advanced Engineering Mathematics" McGraw – Hill						
5	Courts C D City	K CO., New york, 0 Eu., 2017.						
Э.	Gupta C.B, Sin	ig S.K and N	lukesn Kun	nar: "Engine	eering Mathe	ematic for Se	emester I and	
	II", Mc-Graw H	lill Education	(India) Pvt. I	Ltd 2015.				
6.	H. K. Dass a	nd Er. Raji	nish Verma	: "Higher I	Engineering	Mathematic	s" S. Chand	
	Publication, 3 rd I	Ed., 2014.						
7.	James Stewart:	"Calculus"	Cengage Pub	olications, 7 th	ⁿ Ed., 2019.			
8.	David C Lav: "	Linear Algeb	ra and its Ap	plications".	Pearson Publ	ishers, 4 th E	d., 2018.	
9	Gareth Willian	ns: "Linear	Algebra with	application	s" Iones Ba	rtlett Publis	shers Inc. 6 th	
	Ed 2017		ingeora wia	i upplication			iners me., o	
	Eu., 2017.							
Web lin	ks and Video Le	ctures (e-Re	sources):					
• .								
•								
•								
•								
•								
•								
•								
A . 4 4	D. 11.	(6	A		4. I.D. I	1		
Activity	Based Learning	(Suggested	Activities in	Class)/ Pra	ctical Based	learning		
• .								
•								
•								
•								
•								
COs an	d POs Mapping	(Individual (eacher has t	to fill up)				
COs		×		POs				
	1	2	2	105	5	6	7	
	1	2	3	4	3	U	/	
							ļ	
CO2	2							
COS	3							
CO4	k							
COS	;							
Level	3- Highly Mapped,	Level 2-Mo	derately Mapp	ped, Level	1-Low Mapped	l, Level 0- N	Not Mapped	

I Semester

Course Title: Mathematics for Electrical &Electronics Engineering Stream					
Course Code:	22MATE11	CIE Marks	50		
Course Type	Integrated	SEE Marks	50		
(Theory/Practical/Integrated)		Total Marks	100		
Teaching Hours/Week (L:T:P:	2:2:2:0	Exam Hours	03+02		
S)			03+02		
Total Hours of Pedagogy	40 hours Theory + 10-12 Lab	Credits	04		
Total Hours of Tedagogy	slots	Cicuito	04		

Course objectives: The goal of the course **Calculus, Differential Equations and Linear Algebra** (22MATE11) is to

- **Familiarize** the importance of calculus associated with one variable and multivariable for computer science and engineering.
- Analyze computer science and engineering problems applying Ordinary Differential Equations.
- Apply the knowledge of modular arithmetic to computer algorithms.
- **Develop** the knowledge of Linear Algebra to solve the system of equations.

Teaching-Learning Process

Pedagogy (General Instructions):

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- 1. In addition to the traditional lecture method, different types of innovative teaching methods may be adopted so that the delivered lessons shall develop student's theoretical and applied mathematical skills.
- 2. State the need for Mathematics with Engineering Studies and Provide real-life examples.
- 3. Support and guide the students for self-study.
- 4. You will also be responsible for assigning homework, grading assignments and quizzes, and documenting students' progress.
- 5. Encourage the students for group learning to improve their creative and analytical skills.
- 6. Show short related video lectures in the following ways:
 - As an introduction to new topics (pre-lecture activity).
 - As a revision of topics (post-lecture activity).
 - As additional examples (post-lecture activity).
 - As an additional material of challenging topics (pre-and post-lecture activity).
 - As a model solution of some exercises (post-lecture activity).

Module-1 Calculus (8 hours)

Introduction to polar coordinates and curvature relating to EC & EE Engineering applications. Polar coordinates, Polar curves, angle between the radius vector and tangent, angle between two curves. Pedal equations. Curvature and Radius of curvature - Cartesian, Parametric, Polar and Pedal forms. Problems.

Self-study: Center and circle of curvature, evolutes and involutes.

Applications: Communication signals, Manufacturing of microphones, and Image processing. (RBT Levels: L1, L2 and L3)

Module-2 Series Expansion and Multivariable Calculus (8 hours)

Introduction of series expansion and partial differentiation in EC & EE Engineering applications. Taylor's and Maclaurin's series expansion for one variable (Statement only) – problems. Indeterminate forms - L'Hospital's rule. Problems.

Partial differentiation, total derivative - differentiation of composite functions. Jacobian and problems. Maxima and minima for a function of two variables. Problems.

Self-study: Euler's Theorem and problems. Method of Lagrange's undetermined multipliers with single constraint.

Applications: Series expansion in communication signals, Errors and approximations, and vector calculus.

(RBT Levels: L1, L2 and L3)

Module-3 Ordinary Differential Equations (ODEs) of first order (8 hours)

Introduction to first order ordinary differential equations pertaining to the applications for EC & EE engineering.

Linear and Bernoulli's differential equations. Exact and reducible to exact differential equations -Integrating factors on $\frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right)$ and $\frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right)$. Applications of ODE's -Orthogonal trajectories, L-R and C-R circuits. Problems.

Non-linear differential equations: Introduction to general and singular solutions, Solvable for p only, Clairaut's equations, reducible to Clairaut's equations. Problems.

Self-Study: Applications of ODE's, Solvable for x and y.

Applications of ordinary differential equations: L-R and C-R circuits, Rate of Growth or Decay, Conduction of heat.

(RBT Levels: L1, L2 and L3)

Module-4 Integral Calculus (8 hours)

Introduction to Integral Calculus in EC & EE engineering applications.

Multiple Integrals: Evaluation of double and triple integrals, evaluation of double integrals by change of order of integration, changing into polar coordinates. Applications to find Area and Volume by double integral. Problems.

Beta and Gamma functions: Definitions, properties, relation between Beta and Gamma functions. Problems.

Self-Study: Volume by triple integration, Center of gravity.

Applications: Antenna and wave propagation, Calculation of optimum power in electrical circuits, field theory.

(RBT Levels: L1, L2 and L3)

Module-5 Linear Algebra (8 hours)

Introduction of liner algebra related to EC & EE engineering applications.

Elementary row transformation of a matrix, Rank of a matrix. Consistency and Solution of system of linear equations - Gauss-elimination method, Gauss-Jordan method and approximate solution by Gauss-Seidel method. Eigenvalues and Eigenvectors, Rayleigh's power method to find the dominant Eigenvalue and Eigenvector. Problems

Self-Study: Solution of system of equations by Gauss-Jacobi iterative method. Inverse of a square matrix by Cayley- Hamilton theorem.

Applications of Linear Algebra: Network Analysis, Markov Analysis, Critical point of a network system. Optimum solution.

(RBT Levels: L1, L2 and L3)

List of Laboratory experiments (2 hours/week per batch/ batch strength 15)

10 lab sessions + 1 repetition class + 1 Lab Assessment

- 1 2D plots for Cartesian and polar curves
- 2 Finding angle between polar curves, curvature and radius of curvature of a given curve
- **3** Finding partial derivatives, Jacobian and plotting the graph
- 4 Applications to Maxima and Minima of two variables
- 5 Solution of first order differential equation and plotting the graphs
- 6 Program to compute area, volume and centre of gravity
- 7 Evaluation of improper integrals
- 8 Numerical solution of system of linear equations, test for consistency and graphical representation
- 9 Solution of system of linear equations using Gauss-Seidel iteration
- 10 Compute eigenvalues and eigenvectors and find the largest and smallest eigenvalue by Rayleigh power method.
- Suggested software's : Mathematica/MatLab/Python/Scilab

Course outcome (Course Skill Set)

At the end of the course the student will be able to:

- CO1 apply the knowledge of calculus to solve problems related to polar curves.
- CO2 learn the notion of partial differentiation to compute rate of change multivariate functions
- CO3 apply the concept of change of order of integration and variables to evaluate multiple integral and their usage in computing area and volume.
- CO4 make use of matrix theory for solving for system of linear equations and compute eigenvalues and eigenvectors

CO5 familiarize with modern mathematical tools namely SCILAB/PYTHON/MATLAB

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50). The minimum passing mark for the SEE is 35% of the maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination(SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation(CIE):

Two Unit Tests each of 20 Marks (duration 01 hour)

- First test after the completion of 30-40 % of the syllabus
- Second test after completion of 80-90% of the syllabus

One Improvement test before the closing of the academic term may be conducted if necessary.

However best two tests out of three shall be taken into consideration.

Two assignments each of 10 Marks

The teacher has to plan the assignments and get them completed by the students well before the closing of the term so that marks entry in the examination portal shall be done in time. Formative (Successive) Assessments include Assignments/Quizzes/Seminars/ Course projects/Field surveys/ Case studies/ Hands-on practice (experiments)/Group Discussions/ others. The Teachers shall choose the types of assignments depending on the requirement of the course and plan to attain the Cos and POs. (to have a less stressed CIE, the portion of the syllabus should not be common /repeated for any of the methods of the CIE. Each method of CIE should have a different syllabus portion of the course). CIE methods /test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

The sum of two tests, two assignments, will be out of 60 marks and will be scaled down to 30 marks

CIE for the practical component of the Integrated Course

- On completion of every experiment/program in the laboratory, the students shall be evaluated and marks shall be awarded on the same day. The**15 marks** are for conducting the experiment and preparation of the laboratory record, the other **05 marks shall be for the test** conducted at the end of the semester.
- The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report. Each experiment report can be evaluated for 10 marks. Marks of all experiments' write-ups are added and **scaled down to 15 marks**.
- The laboratory test (duration 02/03 hours) at the end of the 14th /15th week of the semester /after completion of all the experiments (whichever is early) shall be conducted for 50 marks and scaled down to 05 marks.

Scaled-down marks of write-up evaluations and tests added will be CIE marks for the laboratory component of IPCC for **20 marks**.

Semester End Examination(SEE):

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject (**duration 03 hours**)

- The question paper shall be set for 100 marks. The medium of the question paper shall be English/Kannada). The duration of SEE is 03 hours.
- The question paper will have 10 questions. Two questions per module. Each question is set for 20 marks. The students have to answer 5 full questions, selecting one full question from each module. The student has to answer for 100 marks and **marks scored out of 100 shall be proportionally reduced to 50 marks**.
- There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.

Suggested Learning Resources:

Books (Title of the Book/Name of the author/Name of the publisher/Edition and Year) Text Books

- 1. **B. S. Grewal**: "Higher Engineering Mathematics", Khanna publishers, 44th Ed., 2021.
- 2. **E. Kreyszig**: "Advanced Engineering Mathematics", John Wiley & Sons, 10th Ed., 2018.

Reference Books

1. V. Ramana: "Higher Engineering Mathematics" McGraw-Hill Education, 11th Ed., 2017

2.	Srimanta Pal &	: Subodh C.	Bhunia: "Eng	ineering M	Iathematics"	Oxford Univ	versity Press,	
3.	N.P Bali and	Manish (Goval: "A tex	tbook of	Engineering	Mathema	tics" Laxmi	
5.	Publications, 10 ^t	^h Ed., 2022.		ite e e e e e e e e e e e e e e e e e e	Linginicoring	,	Lieb Lumin	
4.	C. Ray Wylie,	C. Ray Wylie, Louis C. Barrett: "Advanced Engineering Mathematics" McGraw – Hill						
	Book Co., Newy	ork, 6 th Ed.,	2017.	U	C			
5.	Gupta C.B, Sin	g S.R and M	Mukesh Kuma	r: "Engine	eering Mather	natic for Se	mester I and	
	II", Mc-Graw H	ill Education	n(India) Pvt. Lto	ł 2015.				
6.	H. K. Dass an	nd Er. Raji	nish Verma:	"Higher E	Engineering N	Mathematics	" S. Chand	
	Publication, 3 rd I	Ed., 2014.						
7.	James Stewart:	"Calculus"	Cengage Public	cations, 7 th	Ed., 2019.			
8.	David C Lay: "	Linear Algeb	ora and its Appli	ications", l	Pearson Publis	shers, 4 th Ed	., 2018.	
9.	Gareth William	s: "Linear A	lgebra with app	olications",	, Jones Bartlet	t Publishers	Inc., 6^{m}	
Web lin	Ed., 2017. ks and Video Le	ctures (e.Re	sources).					
			5001 (C5)					
• .								
•								
•								
•								
•								
•								
Activity	Based Learning	(Suggested	Activities in C	lass)/ Pra	ctical Based l	earning		
• .		× 88		,		0		
•								
•								
•								
·								
COs and	l POs Mapping (Individual (teacher has to f	fill up)				
COs	;			POs				
	1	2	3	4	5	6	7	
CO1	-							
CO2	2							
CO3	6							
CO4								
CO5	5							
Level	3- Highly Mapped,	Level 2-Mo	oderately Mapped	l, Level 1	l-Low Mapped,	Level 0- N	ot Mapped	

I Semester

Course Title: Mathematics for mechanical engineering stream-I						
Course Code:	22MATM11	CIE Marks	50			
Course Type	Integrated	SEE Marks	50			
(Theory/Practical/Integrated)		Total Marks	100			
Teaching Hours/Week (L:T:P:	2:2:2:0	Exam Hours	03+02			
S)		Entain Hours	00102			
Total Hours of Pedagogy	40 hours Theory + 10-12 Lab slots	heory + 10-12 Lab slots Credits				

Course objectives: The goal of the course **Calculus, Ordinary Differential Equations and Linear Algebra** (22MATM11) is to

- **Familiarize** the importance of calculus associated with one variable and two variables for Mechanical engineering.
- Analyze Mechanical engineering problems applying Ordinary Differential Equations.
- **Develop** the knowledge of Linear Algebra refereeing to matrices.

Teaching-Learning Process

Pedagogy (General Instructions):

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- 1. In addition to the traditional lecture method, different types of innovative teaching methods may be adopted so that the delivered lessons shall develop student's theoretical and applied mathematical skills.
- 2. State the need for Mathematics with Engineering Studies and Provide real-life examples.
- 3. Support and guide the students for self-study.
- 4. You will also be responsible for assigning homework, grading assignments and quizzes, and documenting students' progress.
- 5. Encourage the students for group learning to improve their creative and analytical skills.
- 6. Show short related video lectures in the following ways:
 - As an introduction to new topics (pre-lecture activity).
 - As a revision of topics (post-lecture activity).
 - As additional examples (post-lecture activity).
 - As an additional material of challenging topics (pre-and post-lecture activity).
 - As a model solution of some exercises (post-lecture activity).

Module-1 Calculus (8 hours)

Introduction to polar coordinates and curvature relating to mechanical engineering.

Polar coordinates, Polar curves, angle between the radius vector and tangent, angle between two curves. Pedal equations. Curvature and Radius of curvature - Cartesian, Parametric, Polar and Pedal forms. Problems.

Self-study: Center and circle of curvature, evolutes and involutes. Applications: Applied Mechanics, Strength of Materials, Elasticity. (RBT Levels: L1, L2 and L3)

Module-2 Series Expansion and Multivariable Calculus (8 hours)

Introduction to series expansion and partial differentiation in the field of mechanical engineering applications.

Taylor's and Maclaurin's series expansion for one variable (Statement only) – problems. Indeterminate forms - L'Hospital's rule, Problems.

Partial differentiation, total derivative - differentiation of composite functions. Jacobian and problems. Maxima and minima for a function of two variables. Problems.

Self-study: Euler's theorem and problems. Method of Lagrange's undetermined multipliers with a single constraint.

Applications: Computation of stress and strain, Errors and approximations in manufacturing process, Estimating the critical points and extreme values, vector calculus.

(RBT Levels: L1, L2 and L3)

Module-3 Ordinary Differential Equations (ODEs) of first order (8 hours)

Introduction to first order ordinary differential equations pertaining to the applications for mechanical engineering.

Linear and Bernoulli's differential equations. Exact and reducible to exact differential equations-Integrating factors on $\frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right)$ and $\frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right)$. Applications of ODE's - Orthogonal trajectories, Newton's law of cooling.

Nonlinear differential equations: Introduction to general and singular solutions, solvable for p only, Clairaut's equations, reducible to Clairaut's equations. Problems.

Self-Study: Applications of ODE's: L-R circuits. Solvable for x and y.

Applications: Rate of Growth or Decay, Conduction of heat.

(RBT Levels: L1, L2 and L3)

Module-4 Ordinary Differential Equations of higher order (8 hours)

Importance of higher-order ordinary differential equations in Mechanical Engineering applications.

Higher-order linear ODE's with constant coefficients - Inverse differential operator, method of variation of parameters, Cauchy's and Legendre homogeneous differential equations. Problems.

Self-Study: Formulation and solution of oscillations of a spring. Finding the solution by the method of undetermined coefficients.

Applications: Applications to oscillations of a spring, Mechanical systems and Transmission lines. **(RBT Levels: L1, L2 and L3)**

Module-5 Linear Algebra (8 hours)

Introduction of liner algebra related to Mechanical Engineering applications.

Elementary row transformation of a matrix, Rank of a matrix. Consistency and solution of a system of linear equations - Gauss-elimination method, Gauss-Jordan method and approximate solution by Gauss - Seidel method. Eigenvalues and Eigenvectors, Rayleigh's power method to find the dominant Eigenvalue and Eigenvector.

Self-Study: Solution of a system of equations by Gauss-Jacobi iterative method. Inverse of a square matrix by Cayley- Hamilton theorem.

Applications of Linear Algebra: Network Analysis, Balancing equations. (RBT Levels: L1, L2 and L3)

List of Laboratory experiments (2 hours/week per batch/ batch strength 15)
10 lab sessions + 1 repetition class + 1 Lab Assessment

1	2D plots for Cartesian and polar curves
2	Finding angle between polar curves, curvature and radius of curvature of a given curve
3	Finding partial derivatives, Jacobian and plotting the graph
4	Applications to Maxima and Minima of two variables
5	Solution of first order differential equation and plotting the graphs
6	Solutions of Second order ordinary differential equations with initial/ boundary conditions
7	Solution of differential equation of oscillations of a spring with various load
8	Numerical solution of system of linear equations, test for consistency and graphical
	representation
9	Solution of system of linear equations using Gauss-Seidel iteration
10	Compute eigenvalues and eigenvectors and find the largest and smallest eigenvalue by
	Rayleigh power method.

Suggested software's : Mathematica/MatLab/Python/Scilab

Course outcome (Course Skill Set)

At the end of the course the student will be able to:

CO1	Apply the knowledge of calculus to solve problems related to polar curves.
CO2	Learn the notion of partial differentiation to compute rate of change of multivariate
	functions.
CO3	Analyze the solution of linear and non-linear ordinary differential equations.
CO4	Get acquainted with solving equations by matrix methods
CO5	Get familiarize with modern mathematical tools namely SCILAB/PYTHON/MATLAB

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50). The minimum passing mark for the SEE is 35% of the maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination(SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation(CIE):

Two Unit Tests each of 20 Marks (duration 01 hour)

- First test after the completion of 30-40 % of the syllabus
- Second test after completion of 80-90% of the syllabus

One Improvement test before the closing of the academic term may be conducted if necessary. However best two tests out of three shall be taken into consideration.

Two assignments each of 10 Marks

The teacher has to plan the assignments and get them completed by the students well before the closing of the term so that marks entry in the examination portal shall be done in time. Formative

(Successive) Assessments include Assignments/Quizzes/Seminars/ Course projects/Field surveys/ Case studies/ Hands-on practice (experiments)/Group Discussions/ others. The Teachers shall choose the types of assignments depending on the requirement of the course and plan to attain the Cos and POs. (to have a less stressed CIE, the portion of the syllabus should not be common /repeated for any of the methods of the CIE. Each method of CIE should have a different syllabus portion of the course). CIE methods /test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

The sum of two tests, two assignments, will be out of 60 marks and will be scaled down to 30 marks

CIE for the practical component of the Integrated Course

- On completion of every experiment/program in the laboratory, the students shall be evaluated and marks shall be awarded on the same day. The**15 marks** are for conducting the experiment and preparation of the laboratory record, the other **05 marks shall be for the test** conducted at the end of the semester.
- The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report. Each experiment report can be evaluated for 10 marks. Marks of all experiments' write-ups are added and **scaled down to 15 marks**.
- The laboratory test (duration 02/03 hours) at the end of the 14th /15th week of the semester /after completion of all the experiments (whichever is early) shall be conducted for 50 marks and scaled down to 05 marks.

Scaled-down marks of write-up evaluations and tests added will be CIE marks for the laboratory component of IPCC for **20 marks**.

Semester End Examination(SEE):

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject (**duration 03 hours**)

- The question paper shall be set for 100 marks. The medium of the question paper shall be English/Kannada). The duration of SEE is 03 hours.
- The question paper will have 10 questions. Two questions per module. Each question is set for 20 marks. The students have to answer 5 full questions, selecting one full question from each module. The student has to answer for 100 marks and **marks scored out of 100 shall be proportionally reduced to 50 marks**.
- There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.

Suggested Learning Resources:

Books (Title of the Book/Name of the author/Name of the publisher/Edition and Year) Text Books

- 1. **B. S. Grewal**: "Higher Engineering Mathematics", Khanna publishers, 44th Ed., 2021.
- 2. E. Kreyszig: "Advanced Engineering Mathematics", John Wiley & Sons, 10th Ed., 2018.

Reference Books

- 1. **V. Ramana:** "Higher Engineering Mathematics" McGraw-Hill Education, 11th Ed., 2017
- 2. Srimanta Pal & Subodh C. Bhunia: "Engineering Mathematics" Oxford University Press, 3rd Ed., 2016.

3.	N.P Bali and	Manish Goy	y al : "A t	extbook of	f Engineerin	g Mathema	tics" Laxmi		
4	C Derr Write Lerris C Dermette "Advenced Environment Mathematics" M.C								
4.	Book Co., Newyork, 6 th Ed., 2017.								
5	Gunta C B Sin	Gunta C.B. Sing S.R. and Mukesh Kumar: "Engineering Mathematic for Semester I and							
5.	II", Mc-Graw H	ill Education(Ir	ndia) Pvt. L	.td 2015.		matic for Sv	inciter 1 and		
6.	H. K. Dass an Publication. 3 rd H	nd Er. Rajnis Ed., 2014.	h Verma:	"Higher	Engineering	Mathematic	s" S. Chand		
7	James Stewart:	"Calculus" Ce	engage Pub	lications. 7 th	^h Ed., 2019				
,. 8	David C I av: "	inear Algebra	and its An	lications"	Pearson Publ	ishers 1 th E	d 2018		
0.	Carath William	Lineal Algeora	anu ns Apj	onnlightion	i caison i ubi	utlatt Dublia	1., 2010.		
9.	Garetii wiinan	is: Linear Alg	geora with	application	is, joiles be	inten Publis	mers mc., o		
	Ed., 2017.								
Web lin	ks and Video Le	ctures (e-Reso	urces):						
•									
•									
•									
•									
•									
•									
•									
Activity	Based Learning	(Suggested Ac	ctivities in	Class)/ Pra	ctical Based	learning			
•	-					_			
•									
•									
•									
•									
COs and	l POs Mapping (Individual tea	cher has to	o fill up)					
COs				POs					
	1	2	3	4	5	6	7		
CO1									
CO2	2						+		
CO3	6								
CO4									
CO5	;								
Level	3- Highly Mapped,	Level 2-Mode	rately Mapp	ed, Level	1-Low Mapped	l, Level 0- N	lot Mapped		

I Semester

Course Title: Mathematics for CSE Stream-I						
Course Code:	22MATS11	CIE Marks	50			
Course Type	Integrated SEE Mark		50			
(Theory/Practical/Integrated)		Total Marks	100			
Teaching Hours/Week (L:T:P:	2:2:2:0	Exam Hours	03+02			
S)						
Total Hours of Pedagogy	40 hours Theory + 10-12 Lab slots	Credits	04			

Course objectives: The goal of the course **Calculus, Modular arithmetic and Linear Algebra** (22MATS11) is to

- **Familiarize** the importance of calculus associated with one variable and multivariable for computer science and engineering.
- Analyze computer science and engineering problems applying Ordinary Differential Equations.
- Apply the knowledge of modular arithmetic to computer algorithms.
- **Develop** the knowledge of Linear Algebra to solve the system of equations.

Teaching-Learning Process

Pedagogy (General Instructions):

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- 1. In addition to the traditional lecture method, different types of innovative teaching methods may be adopted so that the delivered lessons shall develop student's theoretical and applied mathematical skills.
- 2. State the need for Mathematics with Engineering Studies and Provide real-life examples.
- 3. Support and guide the students for self-study.
- 4. You will also be responsible for assigning homework, grading assignments and quizzes, and documenting students' progress.
- 5. Encourage the students for group learning to improve their creative and analytical skills.
- 6. Show short related video lectures in the following ways:
 - As an introduction to new topics (pre-lecture activity).
 - As a revision of topics (post-lecture activity).
 - As additional examples (post-lecture activity).
 - As an additional material of challenging topics (pre-and post-lecture activity).
 - As a model solution of some exercises (post-lecture activity).

Module-1 Calculus (8 hours)

Introduction to polar coordinates and curvature relating to Computer Science and engineering.

Polar coordinates, Polar curves, angle between the radius vector and tangent, angle between two curves. Pedal equations. Curvature and Radius of curvature - Cartesian, Parametric, Polar and Pedal forms. Problems.

Self-study: Center and circle of curvature, evolutes and involutes. Applications: Computer graphics, Image processing. (RBT Levels: L1, L2 and L3)

Module-2 Series Expansion and Multivariable Calculus (8 hours)

Introduction of series expansion and partial differentiation in Computer Science & Engineering applications.

Taylor's and Maclaurin's series expansion for one variable (Statement only) – problems. Indeterminate forms - L'Hospital's rule. Problems.

Partial differentiation, total derivative - differentiation of composite functions. Jacobian and problems. Maxima and minima for a function of two variables. Problems.

Self-study: Euler's theorem and problems. Method of Lagrange's undetermined multipliers with single constraint.

Applications: Series expansion in computer programming, Errors and approximations, calculators. **(RBT Levels: L1, L2 and L3)**

Module-3 Ordinary Differential Equations (ODEs) of first order (8 hours)

Introduction to first order ordinary differential equations pertaining to the applications for Computer Science & Engineering.

Linear and Bernoulli's differential equations. Exact and reducible to exact differential equations -Integrating factors on $\frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right)$ and $\frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right)$. Applications of ODE's - Orthogonal trajectories, L-R & C-R circuits. Problems.

Non-linear differential equations: Introduction to general and singular solutions, Solvable for p only, Clairaut's equations, reducible to Clairaut's equations. **Problems.**

Self-Study: Applications of ODE's, Solvable for x and y.

Applications of ordinary differential equations: L-R & C-R circuits, Rate of Growth or Decay, Conduction of heat.

(RBT Levels: L1, L2 and L3)

Module-4 Modular Arithmetic (8 hours)

Introduction of modular arithmetic and its applications in Computer Science and Engineering. Introduction to Congruences, Linear Congruences, The Chinese Remainder theorem, Solving Polynomials, Linear Diophantine Equation, System of Linear Congruences, Euler's Theorem, Wilson Theorem and Fermat's little theorem. Applications of Congruences-RSA algorithm.

Self-Study: Divisibility, GCD, Properties of Prime Numbers, Fundamental theorem of Arithmetic. **Applications:** Cryptography, encoding and decoding, RSA applications in public key encryption. **(RBT Levels: L1, L2 and L3)**

Module-5 Linear Algebra (8 hours)

Introduction of liner algebra related to computer science & engineering.

Elementary row transformation of a matrix, Rank of a matrix. Consistency and Solution of system of linear equations - Gauss-elimination method, Gauss-Jordan method and approximate solution by Gauss-Seidel method. Eigenvalues and Eigenvectors, Rayleigh's power method to find the dominant Eigenvalue and Eigenvector. Problems

Self-Study: Solution of system of equations by Gauss-Jacobi iterative method. Inverse of a square matrix by Cayley- Hamilton theorem.

Applications: Boolean matrix, Network Analysis, Markov Analysis, Critical point of a network system. Optimum solution.

(RBT Levels: L1, L2 and L3).

List of Laboratory experiments (2 hours/week per batch/ batch strength 15)

10 lab sessions + 1 repetition class + 1 Lab Assessment

- 1 2D plots for Cartesian and polar curves
- 2 Finding angle between polar curves, curvature and radius of curvature of a given curve
- **3** Finding partial derivatives, Jacobian and plotting the graph
- 4 Applications to Maxima and Minima of two variables
- 5 Solution of first order differential equation and plotting the graphs
- 6 Finding GCD using Euclid's Algorithm
- 7 Applications of Wilson theorem
- 8 Numerical solution of system of linear equations, test for consistency and graphical representation
- 9 Solution of system of linear equations using Gauss-Seidel iteration
- 10 Compute eigenvalues and eigenvectors and find the largest and smallest eigenvalue by Rayleigh power method.
- **Suggested software's :** Mathematica/MatLab/Python/Scilab

Course outcome (Course Skill Set)

At the end of the course the student will be able to:

- CO1 apply the knowledge of calculus to solve problems related to polar curves.
- CO2 learn the notion of partial differentiation to compute rate of change multivariate functions
- CO3 get Acquainted and to Apply modular arithmetic to computer algorithms.
- CO4 make use of matrix theory for solving for system of linear equations and compute eigenvalues and eigenvectors
- CO5 familiarize with modern mathematical tools namely SCILAB/PYTHON/MATLAB

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50). The minimum passing mark for the SEE is 35% of the maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination(SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation(CIE):

Two Unit Tests each of 20 Marks (duration 01 hour)

- First test after the completion of 30-40 % of the syllabus
- Second test after completion of 80-90% of the syllabus

One Improvement test before the closing of the academic term may be conducted if necessary. However best two tests out of three shall be taken into consideration.

Two assignments each of 10 Marks

The teacher has to plan the assignments and get them completed by the students well before the closing of the term so that marks entry in the examination portal shall be done in time. Formative

(Successive) Assessments include Assignments/Quizzes/Seminars/ Course projects/Field surveys/ Case studies/ Hands-on practice (experiments)/Group Discussions/ others. The Teachers shall choose the types of assignments depending on the requirement of the course and plan to attain the Cos and POs. (to have a less stressed CIE, the portion of the syllabus should not be common /repeated for any of the methods of the CIE. Each method of CIE should have a different syllabus portion of the course). CIE methods /test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

The sum of two tests, two assignments, will be out of 60 marks and will be scaled down to 30 marks

CIE for the practical component of the Integrated Course

- On completion of every experiment/program in the laboratory, the students shall be evaluated and marks shall be awarded on the same day. The**15 marks** are for conducting the experiment and preparation of the laboratory record, the other **05 marks shall be for the test** conducted at the end of the semester.
- The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report. Each experiment report can be evaluated for 10 marks. Marks of all experiments' write-ups are added and **scaled down to 15 marks**.
- The laboratory test (duration 02/03 hours) at the end of the 14th /15th week of the semester /after completion of all the experiments (whichever is early) shall be conducted for 50 marks and scaled down to 05 marks.

Scaled-down marks of write-up evaluations and tests added will be CIE marks for the laboratory component of IPCC for **20 marks**.

Semester End Examination(SEE):

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject (**duration 03 hours**)

- The question paper shall be set for 100 marks. The medium of the question paper shall be English/Kannada). The duration of SEE is 03 hours.
- The question paper will have 10 questions. Two questions per module. Each question is set for 20 marks. The students have to answer 5 full questions, selecting one full question from each module. The student has to answer for 100 marks and **marks scored out of 100 shall be proportionally reduced to 50 marks**.
- There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.

Suggested Learning Resources:

Books (Title of the Book/Name of the author/Name of the publisher/Edition and Year) Text Books

- 1. **B. S. Grewal**: "Higher Engineering Mathematics", Khanna publishers, 44th Ed., 2021.
- 2. E. Kreyszig: "Advanced Engineering Mathematics", John Wiley & Sons, 10th Ed., 2018.

Reference Books

- 1. **V. Ramana:** "Higher Engineering Mathematics" McGraw-Hill Education, 11th Ed., 2017
- 2. Srimanta Pal & Subodh C. Bhunia: "Engineering Mathematics" Oxford University Press, 3rd Ed., 2016.

3. N.P	Bali and	Manish G	Goyal: "A	textbook of	Engineering	g Mathema	tics" Laxmi
Publ	ications, 10 ^t	^h Ed., 2022.					
4. C. R	C. Ray Wylie, Louis C. Barrett: "Advanced Engineering Mathematics" McGraw – Hill						
Book	x Co., Newy	ork, 6 th Ed.,	2017.				
5. Gup	ta C.B, Sin	g S.R and N	Aukesh Kun	nar: "Engine	eering Mather	matic for Se	emester I and
II", 1	Mc-Graw H	ill Education	(India) Pvt.	Ltd 2015.			
6. H. I	K. Dass ar	nd Er. Rajı	nish Verma	: "Higher H	Engineering	Mathematics	s" S. Chand
Publ	ication, 3 rd I	Ed., 2014.					
7. Jam	es Stewart:	"Calculus"	Cengage Pul	olications, 7 th	¹ Ed., 2019.		
8. Davi	d C Lay: "	Linear Algeb	ra and its Ap	plications", l	Pearson Publi	shers, 4 th Ec	1., 2018.
9. Gare	eth Willian	ns: "Linear A	Algebra with	n application	s", Jones Ba	rtlett Publis	hers Inc., 6 th
Ed., 1	2017.						
10. Will	iam Stallin	gs: "Cryptog	graphy and I	Network Sec	urity" Pearso	n Prentice	Hall, 6 th Ed.,
2013	•						
Web links an	d Video Le	ctures (e-Re	sources):				
•							
•							
•							
•							
•							
•							
•							
Activity Base	d Learning	(Suggested	Activities in	Class)/ Pra	ctical Based	learning	
•				,		U	
•							
•							
•							
COs and POs	Mapping	(Individual t	eacher has t	to fill up)			
COs				POs			
	1	2	3	4	5	6	7
CO1							
CO2							
CO3							
CO4							
C05							
	1. I M	Lovel 2 Me	dorotoly Mon	and Loval 1	Low Monnod	Lovol 0 N	ot Mannad